Influence of Boron Concentration on the Corrosion Resistance of High Boron White Cast Iron to Liquid Zinc Bath

Abstract:

Article Preview

The influence of boron concentration on corrosion resistance of high boron white cast iron dipped into a pure liquid zinc bath at 460°C was investigated. The results reveal that high boron white cast iron containing 3.5 wt.%B exhibits excellent corrosion resistance due to the dense continuous netlike or parallel Fe2B phase which hinders the Fe/Zn interface reaction. The corrosion rate decreases significantly when the boron concentration increases, but the corrosion rate declines slightly when the boron concentration exceeds 3.5wt.%. EDS results indicate the coarse and compact δ phase generated near the matrix and a large amount of massive and blocky  phase occurred close to the liquid zinc. The corrosion process includes Fe/Zn interface reaction and the spalling and fracture of Fe2B. The failure of Fe2B is mainly caused by the microcrack of phase transformation.

Info:

Periodical:

Edited by:

Adel Nofal and Mohamed Waly

Pages:

219-224

DOI:

10.4028/www.scientific.net/KEM.457.219

Citation:

S. Q. Ma et al., "Influence of Boron Concentration on the Corrosion Resistance of High Boron White Cast Iron to Liquid Zinc Bath", Key Engineering Materials, Vol. 457, pp. 219-224, 2011

Online since:

December 2010

Export:

Price:

$35.00

[1] X. B. Liu, Barbero Ever, J. Xu, Burris Matthew, Keh-Minn Chang, Vinod Sikka. Metall. Mater. Trans. A Vol. 36 (2005), p. (2049).

DOI: 10.1007/s11661-005-0325-7

[2] J. Xu, Mark A. Bright, X. B. Liu, Ever Barbero. Metall. Mater. Trans. A Vol. 38 (2007), p.2727.

[3] W. J. Wang, J. P. Lin, Y. L. Wang, G. L. Chen. Corros. Sci. Vol. 49 (2007), p.1340.

[4] K. Zhang, L. Battiston. Wear Vol. 252 (2002), p.332.

[5] K. Zhang, N. Y. Tang, Goodwin Frank E., Sexton Scott. J. Mater. Sci. 2007; 42: 9736-45.

[6] C. Q. Guo, P. M. Kelly. Mater. Sci. Eng. A Vol. 352 (2003), p.40.

[7] H. G. Fu, Q. Xiao, J. C. Kuang, Z. Q. Jiang, J. D. Xing. Mater. Sci. Eng. A Vol. 466 (2007), p.160.

[8] W. D. Wang, S. H. Zhang, X. L. He. Acta Metall. Mater. Vol. 43 (1995), p.1693.

[9] X. M. Cao, R. N. Ma, J. J. Wu, M. Wen, Y. Z. Fan, A. Du. Corros. Eng. Sci. Techn. Vol. 44 (2009), p.441.

[10] Z. L. Liu, Y. X. Li, X. Chen, K. Hu. Mater. Sci. Eng. A Vol. 486 (2008), p.112.

[11] Matthew L. Burris. Doctor thesis, The College of Engineering and Mineral Resources at West Virginia University Morgantown, West Virginia, 2000, p.27.

[12] X. J. Ren, X. Z. Mei, J. She, J. H. Ma. Proceeding of Sino-Swedish Structural Materials Symposium 2007, P. 130.

[13] C. S. Che, J. T. Lu, G. Kong, Q. Xu. Acta Metall. Sin. Vol. 22 (2009), p.138.

In order to see related information, you need to Login.