Strength Properties of Cellulose Nanofiber Green Composites

Abstract:

Article Preview

Environmentally friendly cellulose nanofiber green composites were newly developed by combining two dispersion-type biodegradable resins: polylactic acid (PLA) and chemically modified starch, and cellulose nanofibers of two kinds. The nanoscale cellulose fibers were prepared by homogenization of wood pulp. The 10–100 nm diameter nanoscale cellulose fibers have a web-like network microstructure. The mixture of dispersion-type biodegradable resin and cellulose nanofibers was dried in an air-circulating oven to make composite preform sheets. Cellulose nanofiber composite samples were fabricated by press-forming of the preform sheets. Their mechanical properties were evaluated using room-temperature tensile tests. The composite composed of PLA-based resin and highly homogenized cellulose nanofibers showed higher mechanical properties than those of starch-based resin and coarse cellulose fibers. It is suggested that coarse cellulose fibers act as a defect, resulting in low mechanical properties. Maximum tensile strength reaches approximately 90 MPa at fiber weight contents of 60% by weight. This mechanical property is comparable to that of conventional glass-fiber-reinforced plastics.

Info:

Periodical:

Key Engineering Materials (Volumes 462-463)

Edited by:

Ahmad Kamal Ariffin, Shahrum Abdullah, Aidy Ali, Andanastuti Muchtar, Mariyam Jameelah Ghazali and Zainuddin Sajuri

Pages:

576-581

Citation:

H. Takagi, "Strength Properties of Cellulose Nanofiber Green Composites", Key Engineering Materials, Vols. 462-463, pp. 576-581, 2011

Online since:

January 2011

Authors:

Export:

Price:

$38.00

[1] H. Takagi, S. Kako, K. Kusano, and A. Ousaka: Advanced Composite Materials Vol. 16 (2006) p.377.

[2] H. Takagi and Y. Ichihara: JSME International Journal Series A Vol. 47 (2004) p.551.

[3] R. Tokoro, D. M. Vu, K. Okubo, T. Tanaka, T. Fujii, and T. Fujiura: Journal of Materials Science Vol. 43 (2008) p.775.

[4] N. Teramoto, K. Urata, K. Ozawa, and M. Shibata: Polymer Degradation and Stability Vol. 86 (2004) p.391.

[5] S. H. Aziz and M. P. Ansell: Composites Science and Technology Vol. 64 (2004) p.1231.

[6] H. Takagi and S. Ochi: Proc. of The Third Japan-Canada Joint Conference on New Applications of Advanced Composites (Ueda, 2003), p.19.

[7] L. Jiang and G. Hinrichsen: Die Angewandte Makromolekulare Chemie Vol. 268 (1999) p.18.

[8] S. Wong, R. Shanks, and A. Hodzic: Composites Science and Technology Vol. 64 (2004) p.1321.

[9] M. A. Khan, K. M. I. Ali, G. Hinrichsen, C. Kopp, and S. Kropke: Polymer-Plastics Technology and Engineering Vol. 38 (1999) p.99.

[10] A. K. Mohanty, A. Mubarak, S. Sahoo, and G. Hinrichsen: Journal of Materials Science Vol. 35 (2000) p.2589.

[11] M. M. Hassan, M. R. Islam, L. T. Drzal, and M. A. Khan: Journal of Polymers and the Environment Vol. 13 (2005) p.293.

[12] I. Sakurada, Y. Nukushima, and T. Ito: Journal of Polymer Science Vol. 57 (1962) p.651.

[13] D. H. Page and F. EL-Hosseiny: Journal of Pulp and Paper Science Vol. 9 (1983) p.99.

[14] T. G. Rials, M. P. Wolcoot and J. M. Nassar: Journal Applied Polymer Science Vol. 80 (2001) p.546.

[15] T. Nishino, M. Koreta and K. Jinno: Proc. of Fifth International Workshop on Green Composites, (Fukushima, 2008), p.65.

[16] H. Yano and S. Nakahara: Journal of Materials Science Vol. 39 (2004) p.1635.

[17] W. J. Orts, J. Shey, S. H. Imam, G. M. Glenn, M. E. Guttman and J. Revol: Polymers and the Environment Vol. 13 (2005) p.301.

[18] K. Oksman, M. Skrifvarsb and J. -F. Selinc: Composites Science and Technology Vol. 63 (2003) p.1317.

[19] H. Takagi and A. Asano: Composites. Part A Vol. 39 (2008) p.685.

[20] J. J. McCuskey and F. W. Doherty, in: Composites, edited by ASM International Handbook Committee, volume 1 of Engineering Materials Handbook, Section 3, ASM International (1987).