Strength Properties of Cellulose Nanofiber Green Composites


Article Preview

Environmentally friendly cellulose nanofiber green composites were newly developed by combining two dispersion-type biodegradable resins: polylactic acid (PLA) and chemically modified starch, and cellulose nanofibers of two kinds. The nanoscale cellulose fibers were prepared by homogenization of wood pulp. The 10–100 nm diameter nanoscale cellulose fibers have a web-like network microstructure. The mixture of dispersion-type biodegradable resin and cellulose nanofibers was dried in an air-circulating oven to make composite preform sheets. Cellulose nanofiber composite samples were fabricated by press-forming of the preform sheets. Their mechanical properties were evaluated using room-temperature tensile tests. The composite composed of PLA-based resin and highly homogenized cellulose nanofibers showed higher mechanical properties than those of starch-based resin and coarse cellulose fibers. It is suggested that coarse cellulose fibers act as a defect, resulting in low mechanical properties. Maximum tensile strength reaches approximately 90 MPa at fiber weight contents of 60% by weight. This mechanical property is comparable to that of conventional glass-fiber-reinforced plastics.



Key Engineering Materials (Volumes 462-463)

Edited by:

Ahmad Kamal Ariffin, Shahrum Abdullah, Aidy Ali, Andanastuti Muchtar, Mariyam Jameelah Ghazali and Zainuddin Sajuri






H. Takagi "Strength Properties of Cellulose Nanofiber Green Composites", Key Engineering Materials, Vols. 462-463, pp. 576-581, 2011

Online since:

January 2011





In order to see related information, you need to Login.

In order to see related information, you need to Login.