Physical and Mechanical Properties of Co3(Al,W) with the L12 Structure in Single and Polycrystalline Forms

Abstract:

Article Preview

The physical and mechanical properties of Co3(Al,W) with the L12 structure have been investigated both in single and polycrystalline forms. The values of all the three independent single-crystal elastic constants and polycrystalline elastic constants of Co3(Al,W) experimentally determined by resonance ultrasound spectroscopy at liquid helium temperature are 15~25% larger than those of Ni3(Al,Ta) but are considerably smaller than those previously calculated. When judged from the values of Poisson’s ratio, Cauchy pressure and Gh (shear modulus)/Bh (bulk modulus), the ductility of Co3(Al,W) is expected to be sufficiently high. Indeed, the value of tensile elongation obtained in air is as large as 28 %, which is far larger than that obtained in Ni3Al polycrystals under similar conditions.

Info:

Periodical:

Edited by:

Pavel Šandera

Pages:

9-14

Citation:

H. Inui et al., "Physical and Mechanical Properties of Co3(Al,W) with the L12 Structure in Single and Polycrystalline Forms", Key Engineering Materials, Vol. 465, pp. 9-14, 2011

Online since:

January 2011

Export:

Price:

$38.00

[1] M. Yamaguchi, H. Inui and K. Ito: Acta Mater. Vol. 48 (2000), p.307.

[2] D.P. Pope and S.S. Ezz: Intl. Metals Rev. Vol. 29 (1984), p.136.

[3] T.M. Pollock and R.D. Field, in Dislocations in Solids, Vol. 11, edited by F.R.N. Nabarro and M.S. Duesbery, Elsevier, Amsterdam, (2002), p.546.

[4] F.R.N. Nabarro and M.S. Duesbery: Dislocations in Solids, Vol. 10 (Elsevier, Amsterdam, 1997).

[5] A.M. Beltran, in Superalloys II, edited by C.T. Sims, N.S. Stoloff and W.C. Hagel, Wiley, New York, (1987), p.135.

[6] T.C. Du Mond, P.A. Tully and K. Wikle, in Metals Handbook, 9 th edition, Vol. 3, American Society for Metals, Metals Park, OH, (1980), p.589.

[7] J. Sato, T. Omori, I. Ohnuma, R. Kainuma and K. Ishida: Science Vol. 312 (2006), p.90.

[8] S. Kobayashi, Y. Tsukamoto, T. Takasugi, H. Chinen, T. Omori, K. Ishida and S. Zaefrerer: Intermetallics Vol. 17 (2009), p.1085.

[9] A. Suzuki, G.C. DeNolf and T.M. Pollock: Scripta Mater. Vol. 56 (2007), p.385.

[10] A. Suzuki and T.M. Pollock: Acta Mater. Vol. 56 (2008), p.1288.

[11] S. Miura, K. Ohkubo and T. Mohri: Mater. Trans. JIM Vol. 48 (2007), p.2403.

[12] K. Tanaka, T. Ohashi, K. Kishida and H. Inui: Appl. Phys. Let. Vol. 91 (2007), p.181907.

[13] Q. Yao, H. Xing and J. Sun: Appl. Phys. Lett. Vol. 89 (2006), 161906.

[14] K. Tanaka and M. Koiwa: Intermetallics Vol. 4 (1996), p. S29.

[15] K. Tanaka and M. Koiwa: High Temp. Mater. Processes Vol. 18 (1999), p.323.

[16] D.G. Pettifor: Mater. Sci. Tech. Vol. 8 (1992), p.345.

[17] S.F. Pugh: Phil. Mag. Vol. 45 (1954), p.823.

[18] E.P. George, C.T. Liu and D.P. Pope: Scr. Metall. Mater. Vol. 28 (1993), p.857.