Physical and Mechanical Properties of Co3(Al,W) with the L12 Structure in Single and Polycrystalline Forms


Article Preview

The physical and mechanical properties of Co3(Al,W) with the L12 structure have been investigated both in single and polycrystalline forms. The values of all the three independent single-crystal elastic constants and polycrystalline elastic constants of Co3(Al,W) experimentally determined by resonance ultrasound spectroscopy at liquid helium temperature are 15~25% larger than those of Ni3(Al,Ta) but are considerably smaller than those previously calculated. When judged from the values of Poisson’s ratio, Cauchy pressure and Gh (shear modulus)/Bh (bulk modulus), the ductility of Co3(Al,W) is expected to be sufficiently high. Indeed, the value of tensile elongation obtained in air is as large as 28 %, which is far larger than that obtained in Ni3Al polycrystals under similar conditions.



Edited by:

Pavel Šandera




H. Inui et al., "Physical and Mechanical Properties of Co3(Al,W) with the L12 Structure in Single and Polycrystalline Forms", Key Engineering Materials, Vol. 465, pp. 9-14, 2011

Online since:

January 2011




[1] M. Yamaguchi, H. Inui and K. Ito: Acta Mater. Vol. 48 (2000), p.307.

[2] D.P. Pope and S.S. Ezz: Intl. Metals Rev. Vol. 29 (1984), p.136.

[3] T.M. Pollock and R.D. Field, in Dislocations in Solids, Vol. 11, edited by F.R.N. Nabarro and M.S. Duesbery, Elsevier, Amsterdam, (2002), p.546.

[4] F.R.N. Nabarro and M.S. Duesbery: Dislocations in Solids, Vol. 10 (Elsevier, Amsterdam, 1997).

[5] A.M. Beltran, in Superalloys II, edited by C.T. Sims, N.S. Stoloff and W.C. Hagel, Wiley, New York, (1987), p.135.

[6] T.C. Du Mond, P.A. Tully and K. Wikle, in Metals Handbook, 9 th edition, Vol. 3, American Society for Metals, Metals Park, OH, (1980), p.589.

[7] J. Sato, T. Omori, I. Ohnuma, R. Kainuma and K. Ishida: Science Vol. 312 (2006), p.90.

[8] S. Kobayashi, Y. Tsukamoto, T. Takasugi, H. Chinen, T. Omori, K. Ishida and S. Zaefrerer: Intermetallics Vol. 17 (2009), p.1085.

[9] A. Suzuki, G.C. DeNolf and T.M. Pollock: Scripta Mater. Vol. 56 (2007), p.385.

[10] A. Suzuki and T.M. Pollock: Acta Mater. Vol. 56 (2008), p.1288.

[11] S. Miura, K. Ohkubo and T. Mohri: Mater. Trans. JIM Vol. 48 (2007), p.2403.

[12] K. Tanaka, T. Ohashi, K. Kishida and H. Inui: Appl. Phys. Let. Vol. 91 (2007), p.181907.

[13] Q. Yao, H. Xing and J. Sun: Appl. Phys. Lett. Vol. 89 (2006), 161906.

[14] K. Tanaka and M. Koiwa: Intermetallics Vol. 4 (1996), p. S29.

[15] K. Tanaka and M. Koiwa: High Temp. Mater. Processes Vol. 18 (1999), p.323.

[16] D.G. Pettifor: Mater. Sci. Tech. Vol. 8 (1992), p.345.

[17] S.F. Pugh: Phil. Mag. Vol. 45 (1954), p.823.

[18] E.P. George, C.T. Liu and D.P. Pope: Scr. Metall. Mater. Vol. 28 (1993), p.857.