Peierls Stresses Estimated from CRSS Vs. Temperature Curve and their Relation to the Crystal Structure

Abstract:

Article Preview

Peierls stresses P of a variety of pure crystals, bcc metals, NaCl type crystals, elemental and compound tetrahedrally coordinated crystals, intermetallic compounds and ceramic crystals, have been estimated from the critical resolved shear stress (c) vs. temperature curves. For high P crystals where CRSS data are available only at high temperatures, P has been estimated from the critical temperature T0 at which steep temperature dependence of c vanishes: T0 is related to the kink-pair formation energy which is a function of P, material parameters and dislocation character controlling the deformation. The estimated p/G values are semi-log plotted against h/b value, where G is the shear modulus, h the slip plane spacing and b the Burgers vector. Two facts should be noted. First, P/G values for a group of crystals with the same crystal structure are within a range of a factor of 10. Second, most of the data points lie in between the classical Peierls-Nabarro relation and the Huntington’s modified relation. These facts indicates that Peierls stress is primarily determined by the crystal structure.

Info:

Periodical:

Edited by:

Pavel Šandera

Pages:

97-100

DOI:

10.4028/www.scientific.net/KEM.465.97

Citation:

Y. Kamimura et al., "Peierls Stresses Estimated from CRSS Vs. Temperature Curve and their Relation to the Crystal Structure", Key Engineering Materials, Vol. 465, pp. 97-100, 2011

Online since:

January 2011

Export:

Price:

$35.00

[1] R.E. Peierls: Proc. Phys. Soc. B Vol. 68 (1955), p.1043.

[2] F.R.N. Nabarro: Proc. Phys. Soc. Vol. 52 (1940), p.23.

[3] S. Takeuchi and T. Suzuki, in: Strength of Metals and Alloys, edited by P.O. Kettunen et al., Pergamon Press, Oxford (1988) p.161; T. Suzuki and S. Takeuchi: Rev. Phys. Appl. Vol. 23 (1988), p.685.

[4] J.N. Wang: Mater. Sci. Eng. A Vol. 206 (1996), p.259.

[5] H.B. Huntington: Proc. Phys. Soc. B Vol. 68 (1955), p.1043.

[6] K. Ohsawa, H. Koizumi, H.O.K. Kirchner and T. Suzuki: Philos. Mag. A Vol. 69 (1994), p.171.

[7] T. Suzuki and S. Takeuchi: Crystal Lattice Defects and Dislocaton Dynamics, Chapter 1, edited by R.A. Vardanian, Nova Science Publishers, New York (2001), pp.1-70.

[8] V. Celli, M. Kabler, T. Ninomiya and R. Thomson: Phys. Rev. Vol. 131 (1963), p.58.

[9] J.E. Dorn and S. Rajnak: Trans. Met. Soc. AIME Vol. 230 (1964), p.1052.

[10] D.M. Barnett, R.J. Asaro, S.D. Gavazza, D.J. Bacon and R.O. Scattergood: J. Phys. F: Meta Phys. Vol. 2 (1972), p.854.

[11] S. Takeuchi and T. Suzuki: in the press in J. Phys. Conference Series.

[12] H.O.K. Kirchner and T. Suzuki: Acta mater. Vol. 46 (1998), p.305.

[13] J.S. Daniel, B. Lesage and P. Lacombe: Acta metall. Vol. 19 (1971), p.163.

[14] S. Takeuchi, and T. Hashimoto: J. Mater. Sci. Vol. 25 (1990), p.417.

[15] H. Kurishita, K. Nakajima and H. Yoshinaga: Mater. Sci. Eng. Vol. 54 (1982), p.177.

[16] K. Noda, M. Arita, Y. Ishii, H. Saka, T. Imura, K. Kuroda and H. Watanabe: J. Nuclear Mater. Vol. 141-143 (1986), p.353.

DOI: 10.1016/s0022-3115(86)80064-2

[17] S. Takeuchi, T. Hashimoto and M. Nakamura: Intermetallics Vol. 2 (1994), p.289.

[18] K. Ito, H. Inui, T. Hirano and M. Yamaguchi: Acta metall. Vol. 42 (1994), p.1261.

[19] K. Ito, H. Inui, Y. Shirai and M. Yamaguchi: Philos. Mag. A Vol. 72 (1995), p.1075.

[20] S. Mahajan, J.H. Weernick, G.Y. Chin, S. Nakahara and T.H. Geballe: Appl. Phys. Lett. Vol. 33 (1978), p.972.

[21] V. Vitek, M. Mrovec and J.L. Bassani: Mater. Sci. Eng. A Vol. 365 (2004), p.31.

In order to see related information, you need to Login.