An Improved Segmentation Algorithm for Infrared Imaging Object

Abstract:

Article Preview

In this paper, an improved threshold segmentation algorithm based on isoperimetric ratio for infrared imaging object is proposed. The segmentation weight matrix is constructed by computing the similarity among the pixies with 4 adjoining points and stored in a sparse matrix. The isoperimetric ratio is obtained after the indicator vectors are formed with 255 gray levels. The proposed algorithm selects the minimum isoperimetric ratio confined in conditions as the best partition criterion instead of the traditional minimum isoperimetric ratio. By analyzing the variation of isoperimetric ratio with the gray levels, the proposed method can find the optimum threshold to segment infrared imaging object. Experimental results show that compared with the traditional methods, the proposed algorithm can reach a higher segmentation rate and is more robust in different kinds of infrared images.

Info:

Periodical:

Key Engineering Materials (Volumes 467-469)

Edited by:

Dehuai Zeng

Pages:

1770-1775

DOI:

10.4028/www.scientific.net/KEM.467-469.1770

Citation:

J. Liu et al., "An Improved Segmentation Algorithm for Infrared Imaging Object", Key Engineering Materials, Vols. 467-469, pp. 1770-1775, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.