Tunable Single-Electron Turnstile Using Discrete Dopants in Nanoscale SOI-FETs


Article Preview

An individual dopant atom may become the active unit of future electronic devices by mediating single-electron transport in nanoscale field-effect transistors. Single dopants can be accessed electrically even in a dopant-rich environment, offering the opportunity to develop applications based on arrays of dopants. Here, we focus on single-electron turnstile operation in arrays of dopant-induced quantum dots realized in highly-doped nanoscale transistors. We show that dopant-based single-electron turnstile can be achieved and tuned with a combination of two gates and we indicate guidelines for further optimization.



Edited by:

Seiichi Miyazaki and Hitoshi Tabata




D. Moraru et al., "Tunable Single-Electron Turnstile Using Discrete Dopants in Nanoscale SOI-FETs", Key Engineering Materials, Vol. 470, pp. 27-32, 2011

Online since:

February 2011




[1] H. Sellier, G. P. Lansbergen, J. Caro, S. Rogge, N. Collaert, I. Ferain, M. Jurczak, and S. Biesemans: Phys. Rev. Lett., Vol. 97 (2006), p.206805.

DOI: https://doi.org/10.1109/iconn.2006.340624

[2] G. P. Lansbergen, R. Rahman, C. J. Wellard, I. Woo, J. Caro, N. Collaert, S. Biesemans, G. Klimeck, L. C. L. Hollenberg, and S. Rogge: Nat. Phys., Vol. 4 (2008), p.656.

DOI: https://doi.org/10.1557/proc-1067-b03-07

[3] Y. Ono, K. Nishiguchi, A. Fujiwara, H. Yamaguchi, H. Inokawa, and Y. Takahashi: Appl. Phys. Lett., Vol. 90 (2007), p.102106.

DOI: https://doi.org/10.1063/1.2679254

[4] M. A. H. Khalafalla, Y. Ono, K. Nishiguchi, and A. Fujiwara: Appl. Phys. Lett., Vol. 91 (2007), p.263513.

[5] T. Shinada, S. Okamoto, T. Kobayashi, and I. Ohdomari: Nature, Vol. 437 (2005), p.1128.

[6] F. J. Ruess, W. Pok, T. C. G. Reusch, M. J. Butcher, K. E. J. Goh, L. Oberbeck, G. Scapucci, A. R. Hamilton, and M. Y. Simmons: Small, Vol. 3 (2007), p.563.

[7] M. Tabe, D. Moraru, M. Ligowski, M. Anwar, R. Jablonski, Y. Ono, and T. Mizuno: Phys. Rev. Lett., Vol. 105 (2010), p.016803.

DOI: https://doi.org/10.1103/physrevlett.105.016803

[8] M. Ligowski, D. Moraru, M. Anwar, T. Mizuno, R. Jablonski, and M. Tabe: Appl. Phys. Lett., Vol. 93 (2008), p.142101.

[9] M. Tabe, D. Moraru, M. Ligowski, M. Anwar, K. Yokoi, R. Jablonski, and T. Mizuno: Thin Solid Films, Vol. 518 (2010), p. S38.

DOI: https://doi.org/10.1016/j.tsf.2009.10.051

[10] G. J. Evans, H. Mizuta, and H. Ahmed: Jpn. J. Appl. Phys.: Vol. 40 (2001), p.5837.

[11] K. K. Likharev: IEEE Trans. Magn., Vol. 23 (1987), p.1142.

[12] F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard: Phys. Rev. Lett., Vol. 75 (1995), p.705.

[13] L. J. Geerligs, V. F. Anderegg, P. A. M. Holweg, J. E. Mooij, H. Pothier, D. Esteve, C. Urbina, and M. H. Devoret: Phys. Rev. Lett., Vol. 64 (1990), p.2691.

DOI: https://doi.org/10.1103/physrevlett.64.2691

[14] L. P. Kouwenhoven, L. T. Johnson, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon: Phys. Rev. Lett., Vol. 67 (1991), p.1626.

[15] Y. Ono, A. Fujiwara, K. Nishiguchi, H. Inokawa, and Y. Takahashi: J. Appl. Phys., Vol. 97 (2005), p.031101.

[16] D. Moraru, Y. Ono, H. Inokawa, and M. Tabe: Phys. Rev. B, Vol. 76 (2007), p.075332.

[17] M. Tabe, R. Nuryadi, D. Moraru, Z. A. Burhanudin, K. Yokoi, and H. Ikeda: Acta Phys. Pol. A, Vol. 113 (2008), p.811.

[18] D. Moraru, M. Ligowski, K. Yokoi, T. Mizuno, and M. Tabe: Appl. Phys. Express, Vol. 2 (2009), p.071201.

DOI: https://doi.org/10.1143/apex.2.071201

[19] H. Ikeda and M. Tabe: J. Appl. Phys., Vol. 99 (2005), p.073705.

[20] K. Yokoi, D. Moraru, M. Ligowski, and M. Tabe: Jpn. J. Appl. Phys., Vol. 48 (2009), p.024503.

[21] K. Yokoi, D. Moraru, T. Mizuno, and M. Tabe: J. Appl. Phys., Vol. 108 (2010), p.053710.

Fetching data from Crossref.
This may take some time to load.