Influence of Iron Oxide Nano Particles on Electrospun Poly (Vinylidene Fluride)-Based Carbon Nanofibers on Hydrogen Storage

Abstract:

Article Preview

Electrospun Poly (vinylidene fluoride) (PVdF) fine fiber of 100-300 nm in diameter in ribbon shape was synthesized through the electrospinning process via sol-gel. In order to synthesize infusible nanofibers all processing of dehydrofluorination and carbonization was investigated. Iron nanoparticles was doped with PVDF nanofibers in order to be effective in surface area, and porosity to increase the hydrogen storage. The composition, morphology, structure and surface area of PVDF/Iron Oxide nanofibers were investigated by thermo gravimetric analysis (TGA) to determinate the temperature of possible decomposition and crystallinity, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Micromeritics (ASAP2020) used to study the textural properties of the sample, like surface area, total pore volume, and micro pore volume. The result shows that the PVDF without dehydrofluorination treatment for infusibility become melt at around 160 °C. By adding the iron oxide nanoparticles as a catalyst it can improve the characteristic of the carbon fiber for hydrogen storage. In best of our knowledge, PVDF doping with iron oxide investigated for first time.

Info:

Periodical:

Key Engineering Materials (Volumes 471-472)

Edited by:

S.M. Sapuan, F. Mustapha, D.L. Majid, Z. Leman, A.H.M. Ariff, M.K.A. Ariffin, M.Y.M. Zuhri, M.R. Ishak and J. Sahari

Pages:

1184-1189

Citation:

S. Shahgaldi et al., "Influence of Iron Oxide Nano Particles on Electrospun Poly (Vinylidene Fluride)-Based Carbon Nanofibers on Hydrogen Storage", Key Engineering Materials, Vols. 471-472, pp. 1184-1189, 2011

Online since:

February 2011

Export:

Price:

$38.00

[1] NR. Banapurmath, Tewari PG, Hosmath RS: Renew Energy vol 33(9), 2008, 1982–8.

[2] A. Zabaniotou, O. Ioannidou, E. Antonakou, A. Lappas:. Int J Hydrogen Energy vol 33(10), 2008, 2433–44.

[3] G . Makaka, EL. Meyer, M. McPherson: Renew Energy vol 33(9), 2008, 1959–73.

[4] M. Kanoglu, I. Dincer, MA. Rosen: Int J Hydrogen Energy vol 32(17), 2007, 4250–7.

[5] BJ. Kim, YS. Lee, SJ. Park: Int J Hydrogen Energy vol 33(9), 2008, 2254–9.

[6] H. Takagi, H. Hatori, Y. Soneda, N. Yoshizawa, Y. Yamada: Mater Sci Eng B – Solid State Mater Adv Technol vol 108(1–2), 2004, 143–7.

[7] M.S.A. Rahaman A.F. Ismail, A. Mustafa: Degrad. Stab., Vol. 92, 2007, 1421-1432.

[8] RT . Yang. J Carbon 2000; 38: 623–6.

[9] SJ. Park, BJ. Kim, YS. Lee, MJ: Int J Hydrogen Energy vol 33(6), 20081706–10.

[10] J. Yamashita, M. Shioya, T. Kikutani, and T. Hashimoto, Vol 39, Carbon, , 207 (2001).

[11] Yamashita, J, Shioya M, Kikutani T, Hashimoto T, Carbon 39 (2001) 207–214.

[12] Campesi R, Cuevas F, Gadiou R, Leroy E, Hirscher M, Vix- Guterl C, et al. Carbon 2008; 46(2): 20614.

DOI: https://doi.org/10.1016/j.carbon.2007.11.006

[13] Leela Mohana Reddy A, Ramaprabhu S. Int JHydrogen Energy 2008; 33(3): 1028–34.

[14] Im JS, Kwon O, Kim YH, Park SJ, Lee YS. Microporous Mesoporous Mater 2008; 115(3): 514–21.

[15] P.W. Gibson, H. Schreuder-Gibson, D. Rivin, Colloids Surf. A 469 (1999) 187.

[16] Gauden PA, Terzyk AP, Furmaniak S, Weso1owski RP, Kowalczyk P, Garbacz JK. Impact of an adsorbed phase nonideality in the calculation of the filling pressure of carbon slit-like micropores. Carbon 2004; 42(3): 573–83.

DOI: https://doi.org/10.1016/j.carbon.2003.12.065

[17] Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, et al. J Phys Chem B 2003; 107: 3712–8.

[18] A.J. Lovinger In: D.C. Basset, Editor: J Polymers-1, Applied Science Publishers Ltd., London and New York (1982), p.195–273.

Fetching data from Crossref.
This may take some time to load.