Poly(vinylidene Fluoride)/Microcrystalline Cellulose Nanocomposites with Enhanced Compatibility and Properties


Article Preview

Poly(vinylidene fluoride)/Microcrystalline cellulose (MCC) nanocomposites were prepared by ultrasonic treatment and magnetic stir. Poly(vinylidene fluoride)-graft-maleic anhydride (PVDF-g-MAH) was added to promote matrix–filler compatibility. Transmission electron microscopy (TEM) results showed that the diameter of the MCC was decreased to several tens nanometers by the treatment of ultrasonic and magnetic stir. The results of differential scanning calorimetry (DSC) showed that the peak crystallisation temperatures (Tc) and the crystallisation enthalpy ΔHc increased with the addition of MCC, and the melting enthalpy ΔHm increased. With the addition of the compatibilizer (PVDF-g-MAH), peak crystallisation temperatures increased further, while without further increase of the ΔHc. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) showed that the addition of MCC induced β-phase PVDF, and the addition of PVDF-g-MAH can induce more β-phase PVDF. Mechanical properties of the nanocomposites were evaluated and the results showed that the addition of MCC did not increase the Young’s modulus, while the tensile strength and elongation at break decreased.



Key Engineering Materials (Volumes 471-472)

Edited by:

S.M. Sapuan, F. Mustapha, D.L. Majid, Z. Leman, A.H.M. Ariff, M.K.A. Ariffin, M.Y.M. Zuhri, M.R. Ishak and J. Sahari






X. G. Tang et al., "Poly(vinylidene Fluoride)/Microcrystalline Cellulose Nanocomposites with Enhanced Compatibility and Properties", Key Engineering Materials, Vols. 471-472, pp. 355-360, 2011

Online since:

February 2011




[1] J.N. Coleman, U. Khan, W.J. Blau and Y.K. Gun'ko: Carbon 44 (2006), 1624.

[2] E.H. Qua, P.R. Hornsby, H.S.S. Sharma, G. Lyons and R.D. McCall: J. Appl. Polym. Sci. 113 (2009), 2238.

[3] L. Priya and J.P. Jog: J. Polym. Sci. Pol. Phys. 40 (2002), 1682.

[4] M. Hou, A. Beehag and Q. Yuan: Welding Techniques For Polymer Or Polymer Composite Components, in, Advanced, Composite Structures (AU), (2004).

[5] S. Spoljaric, A. Genovese and R.A. Shanks: Compos. Part A-Appl. 40 (2009), 791.

[6] K. Oksman, A.P. Mathew, D. Bondeson and I. Kvien: Compos. Sci. Technol. 66 (2006), 2776.

[7] S.S. Yu, W.T. Zheng, W.X. Yu, Y.J. Zhang, Q. Jiang and Z.D. Zhao: Macromolecules, 42 (2009), 8870.

[8] J. Buckley, P. Cebe, D. Cherdack, J. Crawford, B.S. Ince, M. Jenkins, J.J. Pan, M. Reveley, N. Washington and N. Wolchover: Polymer 47 (2006), 2411.

DOI: 10.1016/j.polymer.2006.02.012

[9] T.U. Patro, M.V. Mhalgi, D.V. Khakhar and A. Misra: Polymer 49 (2008), 3486.

[10] L. Priya and J.P. Jog: J. Appl. Polym. Sci. 89 (2003), (2036).

[11] P.H. Nam, P. Maiti, M. Okamoto, T. Kotaka, N. Hasegawa and A. Usuki,: Polymer 42 (2001), 9633.

[12] N. Levi, R. Czerw, S.Y. Xing, P. Iyer and D.L. Carroll: Nano Letters 4 (2004), 1267.

[13] J.N. Coleman, U. Khan and Y.K. Gun'ko: Adv. Mater. 18 (2006), 689.

[14] W.J. Ma, L.Q. Liu, Z. Zhang, R. Yang, G. Liu, T.H. Zhang, X.F. An, X.S. Yi, Y. Ren, Z.Q. Niu, J.Z. Li, H.B. Dong, W.Y. Zhou, P.M. Ajayan and S.S. Xie: Nano Lett. 9 (2009), 2855.

[15] X.L. Xie, Y.W. Mai and X.P. Zhou: Mat. Sci. and Eng. R 49 (2005), 89.

[16] A. Genovese and R.A. Shanks: Macromol. Mater. Eng. 292 (2007), 184.

In order to see related information, you need to Login.