Effect of Core Thicknesses on Impact Performance of Thermoplastic Honeycomb Core Sandwich Structure under Low-Velocity Impact Loading

Abstract:

Article Preview

Low-velocity impact test on sandwich panels composed of aluminum face sheets and thermoplastic honeycomb cores have been performed to characterize the impact performance as a function of core thickness and drop heights. Impact parameters like maximum impact force, impact energy and impact damage area were evaluated and compared. Consequent damages were inspected visually on the impact surface as well as the rear surface. The experimental results found that panels with thicker core exhibited higher impact force than thinner core counterparts, allowing the panel to absorbed more energy. Higher degree of impact damage can be observed at elevated drop heights as most of the damage took the form of local core crushing, face sheet buckling and debonding between the face sheet and core,. Resulting damage area were different according to the core thickness as thicker core prone to absorbed more energy that lead to more damage propagation.

Info:

Periodical:

Key Engineering Materials (Volumes 471-472)

Edited by:

S.M. Sapuan, F. Mustapha, D.L. Majid, Z. Leman, A.H.M. Ariff, M.K.A. Ariffin, M.Y.M. Zuhri, M.R. Ishak and J. Sahari

Pages:

461-465

DOI:

10.4028/www.scientific.net/KEM.471-472.461

Citation:

N. Sawal and M. A. Hazizan, "Effect of Core Thicknesses on Impact Performance of Thermoplastic Honeycomb Core Sandwich Structure under Low-Velocity Impact Loading", Key Engineering Materials, Vols. 471-472, pp. 461-465, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.