Large Amplitude Thermo-Mechanical Vibration Analysis of Asymmetrically Laminated Composite Beams

Abstract:

Article Preview

In this paper, simple analytical expression is presented for large amplitude thermo-mechanical free vibration analysis of asymmetrically laminated composite beams. Euler-Bernoulli assumptions together with Von Karman's strain-displacement relation are employed to derive the nonlinear governing partial differential equation (PDE) of motion. He's variational method is employed to obtain a simple and efficient approximate closed form solution of the nonlinear governing equation. Comparison between results of the present work and those available in literature shows the accuracy of presented technique. Some new results for the nonlinear natural frequencies of the laminated beams such as the effect of vibration amplitude, lay-up configuration and thermal loading are presented for future references.

Info:

Periodical:

Key Engineering Materials (Volumes 471-472)

Edited by:

S.M. Sapuan, F. Mustapha, D.L. Majid, Z. Leman, A.H.M. Ariff, M.K.A. Ariffin, M.Y.M. Zuhri, M.R. Ishak and J. Sahari

Pages:

745-750

DOI:

10.4028/www.scientific.net/KEM.471-472.745

Citation:

A. Fallah et al., "Large Amplitude Thermo-Mechanical Vibration Analysis of Asymmetrically Laminated Composite Beams", Key Engineering Materials, Vols. 471-472, pp. 745-750, 2011

Online since:

February 2011

Export:

Price:

$35.00

[1] J. H He: Chaos Solitons Fractals Vol. 34 (2007), p.1430.

[2] J. H He: Chaos Solitons FractalsVol. 19 (2004), p.847.

[3] J.F. Liu: Comput. Math. Appl. Vol. 58 (2009), p.2423.

[4] L. Azrar, R. Benamar and R.G. White: J Sound Vib Vol. 224 (1999), p.183.

[5] M.I. Qaisi: Appl. Acous. Vol. 40 (1993), p.141.

[6] T. Pirbodaghi, M.T. Ahmadian and M. Fesanghary: Mech Res Commun Vol. 36 (2009), p.143.

[7] A.S. Emam and A.H. Nayfeh: Compos. Struct. Vol. 88 (2009), p.636.

[8] X. Song and K. M Wang : Thin-Walled Structures Vol. 47 (2009), p.304.

[9] B.P. Patel, M. Ganapathi and M. Touratier: Compos. Struct. Vol. 46 (1999), p.189.

[10] M. Baghani, R.A. JafariTalookolaei and H. Salarieh: Appl. Math. Model. Vol. 35 (2011), p.130.

[11] S. S Rao: Vibration of continuous systems, Jhon Wiley & Sons Inc, New Jersy (2004). Appendix α1=01∅, xxxx. ∅. dx01∅2. dx; α2=-Υ∅, x1-∅, x001∅, xx. ∅. dx01∅2. dx α3=-Λ01∅, x2. dx01∅, xx. ∅. dx01∅2. dx; αNTx=-NTx01∅, xx. ∅. dx01∅2. dx.

DOI: 10.1017/cbo9780511703751.014

In order to see related information, you need to Login.