A Theoretical Study on Forming Limit Diagram Predictions Using Viscoplastic Polycrystalline Plasticity Models


Article Preview

The Forming Limit Diagrams (FLDs) of textured polycrystalline sheet metals were investigated using micro-macro averaging and two types of grain-interaction models: Full-Constraint (FC) and Self-consistent (SC) schemes, in conjunction with the Marciniak–Kuczynski (MK) approach. By referring to previous FLD studies based on the FC-Taylor model ─ Wu and coworkers [Effect of an initial cube texture on sheet metal formability, Materials Science and Engineering A, 364:182–7, 2004] and Inal and coworkers [Forming Limit comparison for FCC and BCC sheets, International Journal of Plasticity, 21:1255-1266, 2005] ─ we found that the MK-FC strategy leads to unrealistic results. In the former case, the researchers found that an increasing spread about the cube texture produces unexpectedly high limit strains. In the latter work, Inal et al. predicted a remarkably low forming-limit curve for a FCC material and an extremely high forming-limit curve for a BCC material, in the biaxial-stretching range. Our investigations show that simulations performed with the MK-VPSC approach successfully predict more reliable results. For the BCC structure, the MK-VPSC predictions do not give the extreme values predicted when calculations are carried out with the MK-FC approach. In the FCC case, with decreasing textural intensity ─ from the ideal cube texture, through dispersions around the cube texture with increasing cut-off angles, to a random texture ─ a smooth transition in increasing limit strains was obtained. Furthermore, these results suggest that the selected constitutive model is critical for predicting the behavior of materials that exhibit a qualitative change in crystallographic texture, and hence, evolve anisotropically during mechanical deformation.



Main Theme:

Edited by:

J.R. Duflou, R. Clarke, M. Merklein, F. Micari, B. Shirvani and K. Kellens




M. Serenelli et al., "A Theoretical Study on Forming Limit Diagram Predictions Using Viscoplastic Polycrystalline Plasticity Models", Key Engineering Materials, Vol. 473, pp. 327-334, 2011

Online since:

March 2011




[1] S.S. Hecker. Sheet Met. Ind. 52 (1975) p.671.

[2] Z. Marciniak and K. Kuczynski. Int. J. Mech. Sci. 9 (1967) p.609.

[3] Y. Zhou and K.W. Neale. Acta Metall. Mat. 42 (1995) p.2175.

[4] L. Tóth, J. Hirsch and P. van Houtte. Int. J. Mech. Sci. 38 (1996) p.1117.

[5] C.Y. Tang and W.H. Tai. J. Mat. Proc. Tech. 99 (2000) p.135.

[6] W.B. Lee and X.Y. Wen. Int. J. Mech. Sci. 48 (2006) p.134.

[7] J.W. Signorelli, M.A. Bertinetti and P.A. Turner. Int. J. Plast. 25 (2009) p.1.

[8] K. Inal, K.W. Neale and A. Aboutajeddine. Int. J. Plast. 21 (2005) p.1255.

[9] P.D. Wu, S.R. MacEwen, D.J. Lloyd and K.W. Neale. Mat. Sci. and Eng. A 364 (2004) p.182.

[10] A. Molinari, G.R. Canova and S. Ahzi. Acta Metall. 35 (1987) p.2983.

[11] T. Mura. In: Martinus Nijhoff Publishers, Dordrecht, The Netherlands (1987) p.177.

[12] R.A. Lebensohn and C.N. Tomé. Acta Metall. Mat. 41 (1993) p.2611.

[13] J.W. Hutchinson and K.W. Neale. In: Koistinen, D.P., Wang, N.M. (Eds. ), Mechanics of Sheet Metal Forming. Plenum Press, New York, London (1978) p.127.

[14] P.D. Wu, K.W. Neale and V.D. Giessen. Proc. R. Soc. London A 48 (1997) p.453.

[15] R. Knockaert, Y. Chastel and E. Massoni. Int. J. Plast. 18 (2002) p.231.

[16] E.M. Viatkina, W.A. Brekelmans and M. Geers. J. Mater. Proc. Tech. 168 (2005) p.211.

[17] M.J. Serenelli, M.A. Bertinetti and J.W. Signorelli. Int. J. Mech. Sci. 52 (2010) p.1723.

[18] J. Lian, F. Barlat and B. Baudelet. Int. J. Plast. 5 (1989) p.131.

[19] K. W Neale and E. Chater. Int. J. Mech. Sci. 22 (1980) p.563.

[20] K. Yoshida, T. Ishizaka, M. Kuroda and S. Ikawa. Acta Mater. 55 (2007) p.4499.

[21] J.W. Signorelli and M.A. Bertinetti. Int. J. Mech. Sci. 51 (2009) p.473.

Fetching data from Crossref.
This may take some time to load.