A Predictive Model for Tolerance Verification of Bent Sheet Metal Parts


Article Preview

This paper presents a complete model including method and result for tolerance verification of bent sheet metal parts. The method uses a mathematical model to take into account aspects influencing the dimensional accuracy of linear and angular dimensions of bent parts. The model was implemented using a set of experimental data to estimate the dimensional accuracy for dimensions of interest of a specific part. Comparing the prediction data with the measured results allowed validation of the model.



Main Theme:

Edited by:

J.R. Duflou, R. Clarke, M. Merklein, F. Micari, B. Shirvani and K. Kellens




T. H. M. Nguyen et al., "A Predictive Model for Tolerance Verification of Bent Sheet Metal Parts", Key Engineering Materials, Vol. 473, pp. 516-523, 2011

Online since:

March 2011




[1] Streppel, A. H., de Vin, L. J., Brinkman, J. and Kals, H. J. J., Suitability of sheet bending modelling techniques in CAPP applications, in: Journal of Materials Processing Technology, 36/3, Mar. 1993, pp.339-356.

DOI: https://doi.org/10.1016/0924-0136(93)90038-8

[2] de Vin, L.J., Streppel, A.H. and Kals, H.J.J., The accuracy aspect in set-up determination for sheet bending, in: Int. l J. of Advanced Manufacturing Technology, 11, 1996, 179–185.

DOI: https://doi.org/10.1007/bf01351323

[3] Nguyen, T.H.M., Duflou, J.R. and Kruth, J. -P., An application of ISO-GUM in the method for estimating the dimensional errors of bent parts, in: Proceedings of the Digital Enterprise Technology Conference, Setubal, 2006, ISBN 972-99824-1-4, 5 (CD). 18-20th September (2006).

DOI: https://doi.org/10.1007/978-0-387-49864-5_35

[4] Nguyen, T. H. M., Duflou, J. R., Kruth, J. -P., Stouten, I., Van Hecke, J., and Van Bael, A., Tolerance Verification for Sheet Metal Bending: Factors Influencing Dimensional Accuracy of Bent Parts, in: Models for Computer Aided Tolerancing in Design and Manufacturing (Selected Conference Papers), Ed. J.K. Davidson, Springer, Dec 2006, 341-350. ISBN-10 1-4020-5437-8 (HB), ISBN-13 978-1-4020-5437-2 (HB), ISBN-10 1-4020-5438-6 (e-book).

DOI: https://doi.org/10.1007/1-4020-5438-6_34

[5] Singh, U.P.; Maiti, S.K.; Date, P.P. and Narasimhan, K., Numerical simulation of the influence of air bending tool geometry on product quality, in: J. Materials Processing Technology, 14/35, Feb. 2004, 269-275.

DOI: https://doi.org/10.1016/s0924-0136(03)00443-6

[6] Shpitalni, M. and Radin, B., Critical Tolerance Oriented Process Planning in Sheet Metal Bending, in: Trans. of ASME Journal of Mechanical Design, 121, Mar. 1999, pp.136-144.

DOI: https://doi.org/10.1115/1.2829414

[7] Hagenah, H., Simulation based Evaluation of the Accuracy for Sheet Metal Bending caused by the Bending Stage Plan, in: Proc. 36th CIRP Int. Seminar on Manufacturing Systems, Jun. 2003, Saarland University, Saarbrücken, Germany.

[8] Inui, M., Kinosada, A., Suzuki, H., Kimura, F., Sata, T.; Automatic Process Planning for Sheet Metal Parts with Bending Simulation; Intelligent and Integrated Manufacturing Analysis and Synthesis, Vol. 25, ASME, 1987, pp.245-258.

[9] ISO standard, Technical drawings - Geometrical tolerancing - Tolerancing of form, orientation, location and run-out - Generalities, definitions, symbols, indications on drawings, in: ISO 1101 1983 (E), 57-69.

DOI: https://doi.org/10.3403/02066280u

[10] Duflou, J. R., Vancza, J. and Aerens, R., Computer aided process planning for sheet metal bending: A state of the art, in: Computers in Industry, 56/7, 2005, 747-771.

DOI: https://doi.org/10.1016/j.compind.2005.04.001

[11] Stouten I., Van Hecke J., and Van Bael A., Tolerance control of complex bent parts, Project report for contract HOBU/20110, XIOS Hogeschool Limburg, Belgium, (2004).

[12] ISO standard, Guide to the expression of uncertainty in measurement, in: ISO/TC 213/WG 4 N 65 ISO/DTR 14253-2: 1997(E).

Fetching data from Crossref.
This may take some time to load.