Simulation of Super-Plastic Forming Based on a Micro-Structural Constitutive Model and Considering Grain Growth

Abstract:

Article Preview

Constitutive models based on dominant mechanisms in hot forming are proposed. These models consider inter-granular deformation, grain boundary sliding, grain boundary diffusion and grain growth. New stress-strain rate relationships are proposed to predict deformation due to grain boundary sliding and grain boundary diffusion. Beside a Taylor type polycrystalline constitutive model, a visco-plastic relation in conjunction with a yield function is used to predict inter-granular deformation with much less computational costs. The proposed models are calibrated with tensile test data of AA5083 at . The calibrated models closely fit simple tension experimental data for various strain rates and strains. Then as an example the models are used to simulate a tray forming experiment. Dome heights and tray thicknesses at various positions during forming time can well predict experimental observations.

Info:

Periodical:

Main Theme:

Edited by:

J.R. Duflou, R. Clarke, M. Merklein, F. Micari, B. Shirvani and K. Kellens

Pages:

610-617

DOI:

10.4028/www.scientific.net/KEM.473.610

Citation:

M. Farzin et al., "Simulation of Super-Plastic Forming Based on a Micro-Structural Constitutive Model and Considering Grain Growth", Key Engineering Materials, Vol. 473, pp. 610-617, 2011

Online since:

March 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.