Effect of Carbon Migration on Sulfide Stress Corrosion Cracking Behavior of Dissimilar Joints in Wet H2S Environment


Article Preview

In this paper, mechanical performance test, slow strain rate test (SSRT) and optical microscopy analysis were employed in studying the effect of carbon migration on sulfide stress corrosion cracking (SSCC) behaviors of Cr5Mo/A302/0Cr18Ni9 dissimilar joints. The results showed that the resistance to SSCC of this joint improved first then decline after 98h aging treatments. Optical microscopy analysis showed fracture located in coarse grain heat-affected zone (HAZ) of as-welded joint, while in the joints aged for 56h and 98h, the fracture position transferred from coarse grain zone of HAZ to carbon rich belt in welds.



Edited by:

Chin-Yi Chen and Jing-Tang Chang




Y. Jiang et al., "Effect of Carbon Migration on Sulfide Stress Corrosion Cracking Behavior of Dissimilar Joints in Wet H2S Environment", Key Engineering Materials, Vol. 479, pp. 34-39, 2011

Online since:

April 2011




[1] Jian-Qun Tang, Jian-Ming Gong, Xian-Chen Zhang, Shan-Tung Tu. Comparison on the cracking susceptibility of different low alloy steel weldments exposed to the environment containing wet H2S. Engineering Failure Analysis 13 (2006), p.1057–1064.

DOI: https://doi.org/10.1016/j.engfailanal.2005.07.009

[2] H.P. Seifert , S. Ritter. Corrosion fatigue crack growth behaviour of low-alloy reactor pressure vessel steels under boiling water reactor conditions. Corrosion Science 50 (2008) , p.1884–1899.

DOI: https://doi.org/10.1016/j.corsci.2008.03.010

[3] J.L. Albarran, L. Martinez, H.F. Lopez Effect of heat treatment on the stress corrosion resistance of a microalloyed pipeline steel. Corrosion Science 41(1999) , pp.1037-1049.

DOI: https://doi.org/10.1016/s0010-938x(98)00139-5

[4] J. Sojka, M. Jérôme, M. Sozańska, P. Váňová, L. Rytířová and P. Jonšta. Role of microstructure and testing conditions in sulphide stress cracking of X52 and X60 API steels. Materials Science and Engineering A 480 (2008) , p.237–243.

DOI: https://doi.org/10.1016/j.msea.2007.07.029

[5] L.W. Tsay, Y.C. Chen, S.L.I. Chan. International Journal of Fatigue. Sulfide stress corrosion cracking and fatigue crack growth of welded TMCP API 5L X65 pipe-line steel. International Journal of Fatigue 23 (2001), pp.103-113.

DOI: https://doi.org/10.1016/s0142-1123(00)00081-5

[6] C. Barbosa, S.M.C. de Souza, R.O. Centeno, I.C. Abud, O.B. Ferraz. Failure analysis of pipes used in a hydrodesulfuration system of a petrochemical plant. Engineering Failure Analysis 13 (2006), p.1076–1091.

DOI: https://doi.org/10.1016/j.engfailanal.2005.07.014

[7] Y.V. Nawancy. Failure of hydrocracker heat exchanger tubes in an oil refinery by polythionic acid-stress corrosion cracking. Engineering Failure Analysis 16 (2009) , p.2091–(2097).

DOI: https://doi.org/10.1016/j.engfailanal.2009.02.002

[8] L.W. Tsay and W. L. Lin. Hydrogen sulphide stress corrosion cracking of weld overlays for desulfurization reactors. Corrosion Science, 40(4/5), (1998) , pp.577-591.

DOI: https://doi.org/10.1016/s0010-938x(97)00161-3

[9] Y.Y. Chen, Y.M. Liou, H.C. Shih. Stress corrosion cracking of type 321 stainless steels in simulated. Materials Science and Engineering A 407(1/2), (2005), pp.114-126.

DOI: https://doi.org/10.1016/j.msea.2005.07.011

[10] Petrochemical process environments containing hydrogen sulfide and chloride. Materials Science and Engineering A 407 (2005) , p.114–126.

[11] Venkatasubramanian TV, Baker TJ. Role of elonged MnS inclusions in hydrogen embrittlement of high-strength steel. Met Sci. 116(12), (1982), p.543–54.

[12] G. Domizzi, G. Anteri and J. Ovejero-Garciá. Influence of sulphur content and inclusion distribution on hydrogen induced blister cracking in pressure vessel and pipeline steels. Corrosion Science 43(2001), p.325–39.

DOI: https://doi.org/10.1016/s0010-938x(00)00084-6

[13] Taira T, Kobayashi Y, Matsumoto K, et al. Resistance of line pipe steels to wet sour gas. Corrosion 40(9), (1984) , p.478–86.

DOI: https://doi.org/10.5006/1.3577920

[14] Margot-Marette H, Bardou G, Charbonnier JC. The application of the slow strain rate test method for the development of linepipe steels resistant to sulphide stress cracking. Corrosion Science 27 (10/11), (1987), p.1009–26.

DOI: https://doi.org/10.1016/0010-938x(87)90095-3

[15] Omweg GM, Frankel GS, Bruce WA, et al. Performance of welded high-strength low-alloy steels in sour environments. Corrosion 59(7), (2003), p.640–53.

DOI: https://doi.org/10.5006/1.3277595

[16] Her-Hsiung Huang, Wen-Ta Tsai, Ju-Tung Lee. Electrochemical behaivor of the simulated heat-affected zone of A516 carbon steel in H2S solution. Electrochem Acta 41(11), (1996), p.1191–1199.

DOI: https://doi.org/10.1016/0013-4686(95)00470-x

[17] Kobayashi Y, Ume K, Hyodo T, et al. The resistance of welded line pipes to sulfide stress cracking. Corrosion Science 27(10/11), (1987) , p.1117–35.

DOI: https://doi.org/10.1016/0010-938x(87)90102-8

[18] Ikeda A, Kaneko T, Ando Y. On the evaluation method of sulfide stress cracking susceptibility of carbon and low alloy steels. Corrosion Science 27(10/11), (1987) , p.1099–115.

DOI: https://doi.org/10.1016/0010-938x(87)90101-6

[19] ZOU Yang, PAN Chunxu, FU Qiang. etc. In situ observation for corrosion process at fusion boundary of Cr5Mo dissimilar steel welded joints in H2S containing solution. Acta Metallrugica Sinica 41(4), (2005), p.421.

DOI: https://doi.org/10.4028/0-87849-462-6.2245