Simultaneous Insertion of Mg2+, Sr2+ and Mn2+ Ions into Hydroxyapatite Structure

Abstract:

Article Preview

The current trends in bioactive ceramics point out the ionic substitution in hydroxyapatite (HA) as a concrete way to create new active ceramics with a high developed biomimetic character. Accordingly, our objective in this work was investigating the effects of the simultaneous replacement of Ca2+ ions for Mg2+, Sr2+ and Mn2+ into the crystalline structure of HA.

Info:

Periodical:

Key Engineering Materials (Volumes 493-494)

Main Theme:

Edited by:

Eyup Sabri Kayali, Gultekin Goller and Ipek Akin

Pages:

20-26

DOI:

10.4028/www.scientific.net/KEM.493-494.20

Citation:

M. Pereira Moreira et al., "Simultaneous Insertion of Mg2+, Sr2+ and Mn2+ Ions into Hydroxyapatite Structure", Key Engineering Materials, Vols. 493-494, pp. 20-26, 2012

Online since:

October 2011

Export:

Price:

$38.00

[1] E. Boanini, M. Gazzano, and A. Bigi, Ionic substitutions in calcium phosphates synthesized at low temperature, Acta Biomaterialia, 6 (2010) 1882-1894.

DOI: 10.1016/j.actbio.2009.12.041

[2] M. Vallet-Regi and J.M. Gonzalez-Calbet, Calcium phosphates as substitution of bone tissues, Prog Solid State Chem, 32 (2004) 1-31.

[3] M.J. Filiaggi, R.M. Pilliar, and N.A. Coombs, Post-Plasma-Spraying Heat-Treatment of the Ha Coating/Ti-6Al-4V Implant System, J Biomed Mater Res, 27 (1993) 191-198.

DOI: 10.1002/jbm.820270208

[4] B. Bracci, P. Torricelli, S. Panzavolta, E. Boanini, R. Giardino, and A. Bigi, Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings, J Inorg Biochem, 103 (2009).

DOI: 10.1016/j.jinorgbio.2009.09.009

[5] H. Aoki, Medical Application of Hydroxyapatite, Ishiyaku EuroAmerica, Tokyo (1994).

[6] J.C. Elliot, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier, London (1994).

[7] C. Paluszkiewicz, A. Slosarczyk, D. Pijocha, M. Sitarz, M. Bucko, A. Zima, A. Chroscicka, and M. Lewandowska-Szumiel, Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite, J Mol Struct, 976 (2010) 301-309.

DOI: 10.1016/j.molstruc.2010.04.001

[8] A. Hanifi, M.H. Fathi, H.M.M. Sadeghi, and J. Varshosaz, Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application, J Mater Sci: Mater Med, 21 (2010) 2393-2401.

DOI: 10.1007/s10856-010-4088-3

[9] D. Laurencin, N. mora-Barrios, N.H. de Leeuw, C. Gervais, C. Bonhomme, F. Mauri, W. Chrzanowski, J.C. Knowles, R.J. Newport, A. Wong, Z. Gan, and M.E. Smith, Magnesium incorporation into hydroxyapatite, Biomaterials, 32 (2011) 1826-1837.

DOI: 10.1016/j.biomaterials.2010.11.017

[10] G. Renaudin, E. Jallot, and J.M. Nedelec, Effect of strontium substitution on the composition and microstructure of sol-gel derived calcium phosphates, J Sol-Gel Sci Tech, 51 (2009) 287-294.

DOI: 10.1007/s10971-008-1854-5

[11] S. Kannan, F. Goetz-Neunhoeffer, J. Neubauer, S. Pina, P.M.C. Torres, and J.M.F. Ferreira, Synthesis and structural characterization of strontium- and magnesium-co-substituted beta-tricalcium phosphate, Acta Biomaterialia, 6 (2010) 571-576.

DOI: 10.1016/j.actbio.2009.08.009

[12] E.A. Belousova, W.L. Griffin, S.Y. O'Reilly, and N.I. Fisher, Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type, J Geochem Explor, 76 (2002) 45-69.

DOI: 10.1016/s0375-6742(02)00204-2

In order to see related information, you need to Login.