Improvement of Bone Ingrowth on PEEK Surface Implant


Article Preview

It was demonstrated that microstructured surfaces improve cell spreading and bone ingrowth. Particularly, the surface roughness modulates the osseointegration of orthopaedic and dental implants. We have developed an innovative grit blasting process using Biphasic Calcium Phosphate, a Resorbable Biocompatible Blast Media (RBBM). PEEK is biocompatible but an inert material, involving no direct bone bonding. Implants coming from a rabbit experimental study, were processed for X-rays Micro tomography. Light microscopy and SEM were performed.It was demonstrated in this study that the surface treatment on PEEK improve the quality of bone architecture in direct contact with the sample surface, compared to the classical surface of PEEK. These data demonstrate that PEEK rough surface obtained by RBBM blasting maintain high biocompatibility and bone osteoconduction, and promote higher stability of the implant.



Key Engineering Materials (Volumes 493-494)

Main Theme:

Edited by:

Eyup Sabri Kayali, Gultekin Goller and Ipek Akin




G. Daculsi et al., "Improvement of Bone Ingrowth on PEEK Surface Implant", Key Engineering Materials, Vols. 493-494, pp. 795-799, 2012

Online since:

October 2011




[1] Noiset O, Schneider YJ, Marchand-Brynaert J. J Biomater Sci Polym Ed. 2000; 11(7): 767-86.

[2] Park HW, Lee JK, Moon SJ, Seo SK, Lee JH, Kim SH. Spine 2009 Aug 1; 34(17).

[3] Wenz LM, Merritt K, Brown SA, Moet A, Steffee AD. J Biomed Mater Res. 1990 24: 207-15.

[4] Moon SM, Ingalhalikar A, Highsmith JM, Vaccaro AR. Spine J. 2009 Apr; 9(4): 330-5.

[5] Thomas K. A, Cook SD (1985), J Biomed Mater Res 19: 875-901.

[6] Predecki P., Stephan JE., Auslaender BA., Mooney VL., Kirkland K. (1972), J Biomed Mater Res 6: 375-400.

[7] Carlsson L., Rostlund T., Albrektsson B. (1988), Int J Oral Maxillofac Implants 3: 21-24.

[8] Daculsi G., Laboux O, Legeros RZ., (2002) ITBM-RBM 23: 317-25.

[9] Gbureck U. Masten A;, Probst J., Thull R. (2003) Mat Sci Eng 23: 461-5.

[10] Esposito M., Hirsch JM., Lekholm U., Thomsen P. (1998) 106: 721-64.

[11] Lincks J., Boyan BD., Blanchard CR., Lohmann CH., Liu Y., Cochran DL., Schwartz Z., (1998) Biomaterials 19: 2219-32.

[12] Boyan BD., Sylvia VL., Liu Y., Sagun R., Cohran DL., Lohmann CH., Dean DD., Schwartz Z. (199) Biomaterials 20: 2305-10.

[13] Deligianni DD., Katsala N., Ladas S., Sotiropoulou D., Amedee J., Missirlis YF. (2001) Biomaterials 22: 1241-51.

[14] Anselme K., Bigerelle M., Dufresne E., Judas D., Ioost A., Hardouin P. (2000) J Biomed Mater Res 49: 155-166.

[15] Anselme K. (2000) Biomaterials 21: 667-81.

[16] Wenneberg A., Albrektsson T., Andersson B. (1996) Int Oreal Maxillofac Implants 11: 38-45.

[17] Citeau A., Guicheux J., Vinatier C., Layrolle P., Nguyen TP., Pilet P., Daculsi G. (2005) Biomaterials 26 : 3631-8.


[18] Daculsi G, Weiss P, Bourges X, Bretagne; (2004) Patent Biomatlante SAS Vigneux de Bretagne and INSERM and Université de Nantes. n°04 01151. 2004 06/02/(2004).

Fetching data from Crossref.
This may take some time to load.