Embolic Materials of BaFe12O19/Polyurethane Microspheres


Article Preview

Spherical nano-BaFe12O19 was prepared by Colloid template, layer-by-layer electrostatic self-assembly and heat treatment method. BaFe12O19/polyurethane (BF/PU) composite microspheres were prepared by Suspension in-situ polymerization. The Physical and chemical properties of the microspheres were analyzed by SEM, FTIR and TG-DSC, etc. The biocompatibility of microspheres was evaluated. Embolization experiments were performed in rete mirabile (RMB) of pigs. The results showed that BF/PU microspheres had a core-shell structure and good heat stability. The content of BaFe12O19 was 11.11wt% in microspheres. The density ofmicrospheres was 1.055g·cm-3, which was near to that of blood. The composite microspheres had agood biocompatibility and successfully embolized arteriovenous malformation (AVM) with different flow. BF/PU microspheres could be a new type of embolization material for cerebral AVM and has great potential as a therapeutic embolic agent.



Key Engineering Materials (Volumes 493-494)

Main Theme:

Edited by:

Eyup Sabri Kayali, Gültekin Göller and Ipek Akin




H. L. Dai et al., "Embolic Materials of BaFe12O19/Polyurethane Microspheres", Key Engineering Materials, Vols. 493-494, pp. 800-807, 2012

Online since:

October 2011




[1] R.M. Friedlander, Arteriovenous malformations of the brain, N. Engl. J. Med., 356 (2007)2704-2712.

[2] C. Vignali, R. Cioni, E. Neri, P. Petruzzi, I. Bargellini, S. Sardella M. Ferrari, D. Caramella and C. Bartolozzi, Endoluminal treatment of abdominal aortic aneurysms, Abdom. Imaging., 26(2001) 461-468.

DOI: https://doi.org/10.1007/s002610000195

[3] P. Gailloud, Endovascular treatment of cerebral arteriovenous malformations, Tech. Vasc. Intervent. Radiol., 8 (2005)118-128.

[4] S. Ohta , N. Nitta , M. Takahashi , K. Murata and Y. Tabata, Degradable gelatin microspheres as an embolic agent: an experimental study in a rabbit renal model, Korean J. Radiol., 8(2007)418-428.

DOI: https://doi.org/10.3348/kjr.2007.8.5.418

[5] P. Ng, M.S. Khangure, C.C. Phatouros, M. Bynevelt, H. ApSimon and W. McAuliffe, Endovascular treatment of intracranial aneurysms with Guglielmi detachable coils: analysis of midterm angiographic and clinical outcomes, Stroke, 33(2002)210–217.

DOI: https://doi.org/10.1161/hs0102.100486

[6] G. Redekop, R. Willinsky, W. Montanera, K. TerBrugge, M. Tymianski and M. C. Wallace, Endovascular occlusion of basilar bifurcation aneurysms with electrolytically detachable coils, Can. J. Neurol. Sci., 26 (1999)172–181.

DOI: https://doi.org/10.1017/s0317167100000214

[7] M.A. Patterson, J.M. Jean-Claude, M.R. Crain, G.R. Seabrook, R.A. Cambria, W.S. Rilling and J.B. Towne, Lessons learned in adopting endovascular techniques for treating abdominal aortic aneurysm, Arch. Surg., 136(2001)627–34.

DOI: https://doi.org/10.1001/archsurg.136.6.627

[8] N. Shogo, Y. Nakayama, H. Uada-Ishibashi and T. Matsuda, Embolization of experimental aneurysms using a heparin-loaded stent graft with micropores, Cardiovascular Radiation Medicine, 4(2003)29-33.

DOI: https://doi.org/10.1016/s1522-1865(03)00114-8

[9] M.V. Jayaraman, M.L. Marcellus, S. Hamilton, H.M. Do, D Campbell, S.D. Chang, G.K. Steinberg and M.P. Marks, Neurologic complications of arteriovenous malformation embolization using liquid embolic agents, Am. J. Neuroradiol., 29(2008) 242-246.

DOI: https://doi.org/10.3174/ajnr.a0793

[10] D.J. Wheatley, L. Raco, G.M. Bernacca, I. Sim, P.R. Belcher and J.S. Boyd, Polyurethane: material for the next generation of heart valve prostheses?, Eur. J. Cardiothorac. Surg., Vol.

[17] 4, (2000), 440–448.

[11] M. Cabanlit, D. Maitland, T. Wilson, S. Simon, T. Wun, M.E. Gershwin and J. Van de Water, Polyurethane shape memory polymers demonstrate functional biocompatibility in vitro, Macromol. Biosci., 7(2007)48–55.

DOI: https://doi.org/10.1002/mabi.200600177

[12] D.J. Maitland , W. Small IV, J.M. Ortega, P.R. Buckely, J. Rodriguez, J. Hartman and T.S. Wilson, Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms, J. Biomed. Opt. Lett., 12 (2007)30504-1-3.

DOI: https://doi.org/10.1117/1.2743983

[13] A. Metcalfe, A. C. Desfaits, I. Salazkin, L. Yahia, W. M. Sokolowski and J. Raymond, Cold hibernated elastic memory foams for endovascular interventions, Biomaterials, 24 (2003)491–497.

DOI: https://doi.org/10.1016/s0142-9612(02)00560-4

[14] F. Caruso, AS Susha, M. Giersig and H. Möhwald, Magnetic Core–Shell Particles: Preparation of Magnetite Multilayers on Polymer Latex Microspheres, Adv. Mater., 11 (1999)950-953.

DOI: https://doi.org/10.1002/(sici)1521-4095(199908)11:11<950::aid-adma950>3.0.co;2-t

[15] Z.B. Huang and F.Q. Tang. Preparation, Structure, and Magnetic Properties of Polystyrene Coated by Fe3O4 Nanoparticles . J. Colloid Interface Sci., 275(2004)142- 147.

DOI: https://doi.org/10.1016/j.jcis.2003.12.065

[16] S. Tamatani, T. Ozawa, T. Minakawa, S. Takeuchi, T. Koike and R. Tanaka, Radiologic and histopathologic evaluation of canine artery occlusion after collagen-coated platinum microcoil delivery, Am. J. Neuroradiol., 20(1999)541–545.

[17] I.M. Germano, R.L. Davis, C.B. Wilson and G.B. Hieshima, Histopathological follow-up study of 66 cerebral arteriovenous malformations with polyvinyl alcohol, J. Neurosurg., 76 (1992)607-614.

DOI: https://doi.org/10.3171/jns.1992.76.4.0607

[18] D.P. Link, J.D. Strandberg, R. Virmani, R. Virmani, K. Blashka, F. Mourtada and M.A. Samphilipo, Histopathologic appearance of arterial occlusions with hydrogel and polyvinyl alcohol embolic material in domestic swine, J. Vasc. Interv. Radiol., 7(1996).

DOI: https://doi.org/10.1016/s1051-0443(96)70868-0