Cross-Ply Laminates under Static Three-Point Bending: A Numerical Development Model


Article Preview

This paper considers damage development mechanisms in cross-ply laminates using an accurate numerical model. Under static three points bending, two modes of damage progression in cross-ply laminates are predominated: transverse cracking and delamination. However, this second mode of damage is not accounted in our numerical model. After a general review of experimental approaches of observed behavior of laminates, the focus is laid on predicting laminate behavior based on continuum damage mechanics. In this study, a continuum damage model based on ply failure criteria is presented, which is initially proposed by Ladevèze. To reveal the effect of different stacking sequence of the laminate; such as thickness and the interior or exterior disposition of the 0° and 90° oriented layers in the laminate, an equivalent damage accumulation which cover all ply failure mechanisms has been predicted. However, the solution algorithm using finite element analysis which implements progressive failure analysis is summarized. The results of the numerical computation have been justified by the previous published experimental observations of the authors.



Edited by:

Moussa Karama




S. Benbelaid et al., "Cross-Ply Laminates under Static Three-Point Bending: A Numerical Development Model", Key Engineering Materials, Vol. 498, pp. 42-54, 2012

Online since:

January 2012




[1] B. G. Green, M.R. Wisnom, S.R. Hallett: An experimental investigation into the tensile strength scaling of notched composites. Composites: Part A 38(3), 867–878 (2007).

DOI: 10.1016/j.compositesa.2006.07.008

[2] S. R. Hallett, M.R. Wisnom: Experimental investigation of progressive damage and the effect of layup in notched tensile tests. Journal of Composite Materials 40(2), 119–141 (2006).

DOI: 10.1177/0021998305053504

[3] F. Pierron, B. Green, M.R. Wisnom, S.R. Hallett: Full-field assessment of the damage process of laminated composite open-hole tensile specimens. Part II: Experimental results. Composites: Part A 38(11), 2321–2332 (2007).

DOI: 10.1016/j.compositesa.2007.01.019

[4] J. Lemaitre, J.L. Chaboche: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990).

[5] P.P. Camanho, P. Maimí, C.G. Dávila: Prediction of size effects in notched laminates using continuum damage mechanics. Composites Science and Technology 67(13), 2715–2727 (2007).

DOI: 10.1016/j.compscitech.2007.02.005

[6] N. Germain, J. Besson, F. Feyel: Composite layered materials: Anisotropic nonlocal damage models. Computer Methods in Applied Mechanics and Engineering 196(41–44), 4272–4282 (2007).

DOI: 10.1016/j.cma.2007.04.009

[7] P. Ladevèze: A damage computational approach for composites: Basic aspects and micromechanical relations. Computational Mechanics 17(1–2), 142–150 (1995).

DOI: 10.1007/s004660050099

[8] E. Abisset , F. Daghia , P. Ladevèze: On the validation of a damage mesomodel for laminated composites by means of open-hole tensile tests on quasi-isotropic laminates. Composites: Part A 42, 1515–1524(2011).

DOI: 10.1016/j.compositesa.2011.07.004

[9] C. Hochard, Y. Thollon, A generalized damage model for woven ply laminates under static and fatigue loading conditions, International Journal of Fatigue 32, 158–165(2010).

DOI: 10.1016/j.ijfatigue.2009.02.016

[10] F. Paris, A. Blazquez, L.N. McCartney, V. Manticˇ, Characterization and evolution of matrix and interface related damage in [0/90]S laminates under tension. Part I: Numerical predictions. Composites Science and Technology 70, 1168–1175(2010).

DOI: 10.1016/j.compscitech.2010.03.004

[11] P.F. Liu , J.Y. Zheng: Recent developments on damage modeling and finite element analysis for composite laminates: A review. Materials and Design 31, 3825–3834(2010).

DOI: 10.1016/j.matdes.2010.03.031

[12] I. Lapczyk, J. A. Hurtado: Progressive damage modeling in fiber-reinforced materials. Composites: Part A 38(11), 2333–2341 (2007).

DOI: 10.1016/j.compositesa.2007.01.017

[13] F. Laurin, N. Carrère, J. F. Maire: A multiscale progressive failure approach for composite laminates based on thermodynamical viscoelastic and damage models. Composites: Part A 38(1), 198–209 (2007).

DOI: 10.1016/j.compositesa.2006.01.018

[14] V. Las, R. Zemˇcik: Progressive damage of unidirectional composite panels. Journal of Composite Materials 42(1), 25–44 (2008).

[15] P. Maimí, P. P. Camanho, J.A. Mayugo , C.G. Dávila: A continuum damage model for composite laminates: Part I – Constitutive model. Mechanics of Materials 39(10), 897–908 (2007).

DOI: 10.1016/j.mechmat.2007.03.005

[16] P. Maimí, P. P. Camanho, J. A. Mayugo, C. G. Dávila: A continuum damage model for composite laminates: Part II – Computational implementation and validation. Mechanics of Materials 39(10), 909–919 (2007).

DOI: 10.1016/j.mechmat.2007.03.006

[17] A. Matzenmiller, J. Lubliner, R. L. Taylor: A constitutive model for anisotropic damage in fiber-composites. Mechanics of Materials 20(2), 125–152 (1995).

DOI: 10.1016/0167-6636(94)00053-0

[18] S.T. Pinho, P. Robinson, L. Iannucci : Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part I: Development. Composites: Part A 37(1), 63–73 (2006).

DOI: 10.1016/j.compositesa.2005.04.016

[19] S.T. Pinho, P. Robinson, L. Iannucci : Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation. Composites: Part A 37(5), 766–777 (2006).

DOI: 10.1016/j.compositesa.2005.06.008

[20] P. Ladevèze: On a damage mechanics approach. In: Baptiste D (ed) Mechanics and mechanisms of damage in composites and multi-materials. Mechanical Engineering Publications, London, 119–142 (1991).

[21] P. Ladevèze: Inelastic strains and damage. In: Talreja R (Ed) Damage mechanics of composite materials. Composite materials series, vol 9. Elsevier Science, Oxford, Chap. 4 (1994).

[22] AF. Johnson, AK. Pickett, P. Rozycki: Computational methods for predicting impact damage in composite structures. Compos Sci Technol 61, 2183–2192 (2001).

DOI: 10.1016/s0266-3538(01)00111-7

[23] H. Kilic, R. Haj-Ali : Progressive damage and nonlinear analysis of pultruded composite structures. Composites: Part B 34: 235–250 (2003).

DOI: 10.1016/s1359-8368(02)00103-8

[24] L. Moncel: Etude des mécanismes d'endommagement d'un assemblage cuivre/composite carbone-carbone sous chargement thermomécanique. Ph.D. thesis, Université Bordeaux I, Ecole Doctorale des Sciences Physiques et de L'Ingenieur, Bordeaux, France (1999).

[25] EA. Phillips, CT. Herakovich, LL. Graham: Damage development in composites with large stress gradients. Compos Sci Technol 61, 2169–2182 (2001).

DOI: 10.1016/s0266-3538(01)00112-9

[26] O. Allix, L. Daudeville, P. Ladevèze : Delamination and damage mechanics. In: Baptiste D (ed) Mechanics and mechanisms of damage in composites and multi-materials. Mechanical Engineering Publications, London, 143–158 (1991).

DOI: 10.1016/0961-9526(95)93976-3

[27] O. Allix, P. Feissel, P. Thévenet: A delay damage mesomodel of laminates under dynamic loading: basic aspects and identification issues. Compos Struct 81, 1177–1191 (2003).

DOI: 10.1016/s0045-7949(03)00035-x

[28] P. Ladevèze: A damage mesomodel of laminate composites. In: Lemaitre J (ed) Handbook of materials behavior models. Academic Press, London, 1004–1014 (2001).

DOI: 10.1016/b978-012443341-0/50102-2

[29] A. R. Bezazi, A. El Mahi, J.M. Berthelot, B. Bezzazi: Flexural fatigue behavior of cross-ply laminates: an experimental approach. Strength of Materials 35(2), 149-161 (2003).

[30] J.M. Berthelot: Composite Materials. Mechanical Behavior and Structural Analysis, Springer, New York (1999).

Fetching data from Crossref.
This may take some time to load.