EPD of Reverse Micelle Pd and Pt Nanoparticles onto InP and GaN for High-Response Hydrogen Sensors


Article Preview

We investigated properties of nanolayers electrophoretically deposited (EPD) onto semiconductor indium phosphide (InP) or gallium nitride (GaN) single crystals from colloid solutions of metal palladium (Pd), platinum (Pt) or bimetallic Pd/Pt nanoparticles (NPs) in isooctane. Colloids with metal NPs were prepared by reaction of metal compounds with the reducing agent hydrazine in water confined to reverse micelles of surfactant AOT.. Chopped DC electric voltage was applied for the time period to deposit metal NPs, only partly covering surface of the wafer. The deposits were image-observed by scanning electron microscopy (SEM)..Diodes with porous Schottky contacts were made by printing colloidal graphite on the NPs deposited surface and making ohmic contact on the blank side of the wafer. The diodes showed current-voltage characteristics of excellent rectification ratio and barrier height values close to Schottky-Mott limit, which was an evidence of negligible Fermi level pinning. Large increase of current was observed after switching on a flow of gas blend hydrogen in nitrogen (H2/N2). The diodes were measured with various H2/N2 in the range from 1000 ppm to 1 ppm of H2. Current change ratios about 106 and about 10 were achieved with 1000 ppm and 1 ppm H2/N2.



Edited by:

A. R. Boccaccini, O. Van der Biest, R. Clasen and J.H. Dickerson




K. Zdansky et al., "EPD of Reverse Micelle Pd and Pt Nanoparticles onto InP and GaN for High-Response Hydrogen Sensors", Key Engineering Materials, Vol. 507, pp. 169-173, 2012

Online since:

March 2012




[1] H.I. Chen, Y.I. Chou, Evaluation of the perfection of the Pd-InP Shottky interface from the energy viewpoint of hydrogen adsorbates, Semicond. Sci. Tech., 19 (2004).

[2] Y.I. Chou, C.M. Chen, W.C. Liu, H.I. Chen, A new Pd–InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles, IEEE Electr. Device L. 26 (2005) 62-64.

DOI: https://doi.org/10.1109/led.2004.840736

[3] T. Kimura; H. Hasegawa; T. Sato, T. Hashizume, Sensing mechanism of InP hydrogen sensors using Pt Schottky diodes formed by electrochemical process, Jpn. J. Appl. Phys Part 1-Regulat Papers Bief Commun. & Rev. Papers, 45, Iss. 4B (2006) 3414-3422.

DOI: https://doi.org/10.1143/jjap.45.3414

[4] J.R. Huang, W.C. Hsu, Y.J. Chen, T.B. Wang, K.W. Lin, H.I. Chen, W.C. Liu, Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/A10. 3Ga0. 7As Schottky diodes, Sensor. Actuat. B, 117 (2006) 151-158.

DOI: https://doi.org/10.1016/j.snb.2005.11.020

[5] J.R. Huang, W.C. Hsu, H.I. Chen, W.C. Liu, Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres, Sensor. Actuat. B, 123 (2007) 1040–1048.

DOI: https://doi.org/10.1016/j.snb.2006.11.008

[6] S.N. Das, A.K. Pal, Hydrogen sensor based on thin film nanocrystalline n-GaN/Pd Schottky diode, J. Phys. D Appl. Phys. 40 (2007) 7291–7297.

DOI: https://doi.org/10.1088/0022-3727/40/23/006

[7] Y. Kokubun, T. Seto, S. Nakagomi, Effects of ambient gases on current-voltage characteristics of Pt-GaN Schottky diodes at high temperatures, Jpn. J. Appl. Phys Part 2-Lett., 40 (2001) L663-L665.

DOI: https://doi.org/10.1143/jjap.40.l663

[8] J. Schalwig, G. Muller, U. Karrer, Hydrogen response mechanism of Pt-GaN Schottky diodes, Appl. Phys. Lett. 80 (2002) 1222-1224.

DOI: https://doi.org/10.1063/1.1450044

[9] J. Schalwig, G. Muller, M. Eickhoff, Group III-nitride-based gas sensors for combustion monitoring, J. Schalwig, G. Muller, M. Eickhoff, O. Ambacher, M. Stutzmann, Mat. Sci. Eng. B-Adv. 93 (2002) 207-214.

DOI: https://doi.org/10.1016/s0921-5107(02)00050-8

[10] B.S. Kang, S. Kim, F. Ren, B.P. Gila, C.R. Abernathy, S. Pearton, Comparison of MOS and Schottky W/Pt-GaN diodes for hydrogen detection, Sensor. Actuat. B, 104 (2005) 232-236.

DOI: https://doi.org/10.1016/j.snb.2004.05.018

[11] K. Matsuo, N. Negoro, J. Kotani, T. Hashizume, H. Hasegawa, Pt Schottky diode gas sensors formed on GaN and AlGaN/GaN heterostructure, Appl. Surf. Sci., 244 (2005) 273-276.

DOI: https://doi.org/10.1016/j.apsusc.2004.10.149

[12] M. Ali, V Cimalla, V. Lebedev, H. Romanus, V. Tilak, D. Merfeld, P. Sandvik, O. Ambacher, Pt/GaN Schottky diodes for hydrogen gas sensors, Sensor. Actuat. B, 113 (2006) 797-804.

DOI: https://doi.org/10.1016/j.snb.2005.03.019

[13] M. Ali, V. Cimalla, V. Lebedev, V. Tilak, P. Sandvik, D.V. Merfeld, O. Ambacher, A study of hydrogen sensing performance of Pt-GaN Schotty diodes, IEEE Sensor. J., 6 (2006) 1115-1119.

DOI: https://doi.org/10.1109/jsen.2006.881346

[14] F.K. Yam, Z. Hassan, A.Y. Hudeish, The study of Pt Schottky contact on porous GaN for hydrogen sensing, Thin Solid Films, 515 (2007) 7337-7341.

DOI: https://doi.org/10.1016/j.tsf.2007.02.096

[15] Y. Irokawa, Y. Sakuma, T. Sekiguchi, Effect of dielectrics on hydrogen detection sensitivity of metal-insulator-semiconductor Pt-GaN diodes, Jpn. J. Appl. Phys Part 1-Regulat Papers Bief Commun. & Rev. Papers, 46 (2007) 7714-7716.

DOI: https://doi.org/10.1143/jjap.46.7714

[16] T.H. Tsai, J.R. Huang, K.W. Lin, W.C. Hsu, H.Y. Chen, W.C. Liu, Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode, Sensor. Actuat. B 129 (2008) 292-302.

DOI: https://doi.org/10.1016/j.snb.2007.08.028

[17] T.Y. Jheng, T.L. Ching, Improved detection sensitivity of Pt/beta-Ga(2)O(3)/GaN hydrogen sensor diode, Sensor. Actuat. B, 143 (2009) 192-197.

DOI: https://doi.org/10.1016/j.snb.2009.08.040

[18] K. Zdansky, P. Kacerovsky, J. Zavadil, J. Lorincik and A. Fojtik, Layers of metal nanoparticles on semicoductors deposited by electrophoresis from solutions with reverse micelles Nanoscale Res. Lett. 2 (2007) 450-454.

DOI: https://doi.org/10.1007/s11671-007-9085-1

[19] K. Zdansky, J. Zavadil, P. Kacerovsky, J. Lorincik, J. Vanis, F. Kostka, O. Cernohorsky, A. Fojtik, J. Reboun, J. Cermak, Electrophoresis deposition of metal nanoparticles with reverse micelles onto InP, Int. J. Mat. Res. 100 (2009) 1234-1238.

DOI: https://doi.org/10.3139/146.110178

[20] K. Zdansky, J. Zavadil, P. Kacerovsky, F. Kostka, and A. Fojtik, Electrophoretic deposition of reverse micelle metal nanoparticles, Phys. Stat. Sol. C, 12 (2009) 2722-2714.

DOI: https://doi.org/10.1002/pssc.200982587

[21] K. Zdansky, J. Zavadil, P. Kacerovsky, F. Kostka, J. Lorincik, O. Cernohorsky, M. Muller, M. Kostejn, and A. Fojtik, Films of metal nonoparticles deposited on semiconductors by electrophoresis: Technology and characterization, in Proc. 1st Intern. Conf. NANOCON 2009, No. 60, 8 pages.

[22] K. Zdansky, J. Zavadil, P. Kacerovsky, J. Lorincik, and A. Fojtik, Deposition of Pd nanoparticles on InP by electrophoresis: Dependence on electrode polarity IEEE Trans. Nanotechnology 9 (2010) 355-360.

DOI: https://doi.org/10.1109/tnano.2009.2030501

[23] K. Zdansky, R. Yatskiv, J. Grym, O. Cernohorsky, J. Zavadil, F. Kostka, Study of electrophoretic deposition of Pd metal nanoparticles on InP and GaN crystal semiconductors for H2-gas sensors, in Proc. 2nd Intern. Conf. NANOCON 2010, No. B13, ps. 182-186.

[24] Information on www. wafertech. co. uk.

[25] Information on www. kymatech. com.

[26] D.H. Chen, C.C. Wang and T.C. Huang, Preparation of palladium ultrafine particles in reverse micelles, J. Colloid Interface Sci. 210 (1999) 123-129.

DOI: https://doi.org/10.1006/jcis.1998.5795

[27] D.H. Chen, J.J. Yeh, T.C. Huang, Synthesis of platinum ultrafine particles in AOT reverse micelles, J. Colloid Interface Sci. 215 (1999) 159-166.

DOI: https://doi.org/10.1006/jcis.1999.6239

[28] M.L. Wu, D.H. Chen, T.C. Huang, Preparation of Pd/Pt bimetallic nanoparticles in water/AOT/iso-octane microemulsions, J. Colloid Interface Sci. 243 (2001) 102-108.

DOI: https://doi.org/10.1006/jcis.2001.7887

[29] Information on www. sigmaaldrich. com.

[30] P. Gyftou, E.A. Pavlatou, N. Spyrellis, Effect of pulse electrodeposition parameters on the properties of Ni/nano-SiC composites, Appl. Surf. Sci. 254 (2008) 5910-5916.

DOI: https://doi.org/10.1016/j.apsusc.2008.03.151

[31] K. Zdansky, Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles, Nanoscale Res. Lett. 6 (2011) 490, 10 pages.

DOI: https://doi.org/10.1186/1556-276x-6-490

[32] K. Skucha, Z. Fan, K. Jeon, A. Javey, B. Boser, Palladium/silicon nanowire Schottky barrier-based hydrogen sensors, Sens. Actuators B 145 (2010) 232-238.

DOI: https://doi.org/10.1016/j.snb.2009.11.067

[33] L.J. Brillson, H.L. Mosbacker, M.J. Hetzer, Y. Strzhemechny, D.C. Look, G. Cantwell, J. Zhang, J.J. Song, Surface and near-surface passivation, chemical reaction, and Schottky barrier formation at ZnO surfaces and interfaces, Appl. Surf. Sci. 254 (2008).

DOI: https://doi.org/10.1016/j.apsusc.2008.03.050