Application of Electrochemical Impedance Spectroscopy in Organic Solar Cells with Vertically Aligned TiO2 Nanorod Arrays as Buffer Layer

Abstract:

Article Preview

Single-crystal TiO2 nanorod film was synthesized directly on FTO substrates with various lengths by changing the hydrothermal growth parameters including growth time and growth temperature. The obtained nanorod arrays were incorporated in organic solar cells as buffer layer instead of PEDOT: PSS. Results showed that devices assembled with TiO2 nanorods film of 200 nm in length exhibited a lower open-circuit voltage but a significantly higher short-circuit current density compared to those of normal FTO/PEDOT: PSS/P3HT: PCBM/Al structure with a comparable active layer thickness. Overall the power conversion efficiency was boosted by two-fold. Electrochemical impedance spectroscopy (EIS) analyses revealed that the improvement in the photovoltaic performance was induced by the inhibited recombination and consequently enhanced electron lifetime.

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Edited by:

Wei Pan and Jianghong Gong

Pages:

1598-1603

Citation:

Y. C. Zhang et al., "Application of Electrochemical Impedance Spectroscopy in Organic Solar Cells with Vertically Aligned TiO2 Nanorod Arrays as Buffer Layer", Key Engineering Materials, Vols. 512-515, pp. 1598-1603, 2012

Online since:

June 2012

Export:

Price:

$38.00

[1] B. C. Thompson, J. M. J. Fréchet, Polymer–fullerene composite solar cells, Angew. Chem. Int. Ed. 47 (2008) 58-77.

[2] L. M. Chen, Z. Hong, G. Li, Y. Yang, Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells, Adv. Mater. 21 (2009) 58-77.

DOI: https://doi.org/10.1002/adma.200802854

[3] D. Kearns, M. Calvin, The photovoltaic effect and photoconductivity in laminated organic systems, J. Chem. Phys. 29 (1958) 950-954.

[4] C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48 (1986) 183-185.

[5] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science. 258 (1992) 1474-1476.

DOI: https://doi.org/10.1126/science.258.5087.1474

[6] N. S. Sariciftci, D. Braun, C. Zhang, et al., Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells, Appl. Phys. Lett. 62 (1993) 585–587.

DOI: https://doi.org/10.1063/1.108863

[7] H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photonics. 3 (2009) 649–653.

DOI: https://doi.org/10.1038/nphoton.2009.192

[8] D. J. Milliron, I. Gur, A. P. Alivisatos, Hybrid organic–nanocrystal solar cells, Mater. Res. Bull. 30 (2005) 41-44.

DOI: https://doi.org/10.1557/mrs2005.8

[9] J. Bouclé, S. Chyla, M. S. P. Shaffer, et al., Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO2 nanorods, Adv. Funct. Mater. 18 (2008) 622–633.

DOI: https://doi.org/10.1002/adfm.200700280

[10] G. P. Bartholomew,A. J. Heeger, Infiltration of regioregular poly[2, 2 '-(3-hexylthiopene)] into random nanocrystalline TiO2 networks, Adv. Funct. Mater. 15 (2005) 677-682.

DOI: https://doi.org/10.1002/adfm.200400277

[11] J. Liu, W. Wang, H. Yu, Z. Wu, J. Peng, Y. Cao, Surface ligand effects in MEH-PPV/TiO2 hybrid solar cells, Sol. Eng. Mater. Sol. Cells. 92 (2008) 1403–1409.

DOI: https://doi.org/10.1016/j.solmat.2008.05.017

[12] G.K. Mor, K. Shankar, M. Paulose, et al., High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays, Appl. Phys. Lett. 91 (2007) 152111.

DOI: https://doi.org/10.1063/1.2799257

[13] E. E. Pommer, B. Liu, E. S. Aydil, Electron transport and recombination in dye -sensitized solar cells made from single-crystal rutile TiO2 nanowires, Phys. Chem. Chem. Phys. 11 (2009) 9648-9652.

DOI: https://doi.org/10.1039/b915345d

[14] B. Liu, E. S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells, J. Am. Chem. Soc. 131 (2009) 3985–3990.

DOI: https://doi.org/10.1021/ja8078972

[15] J. H. Bang, P. V. Kamat, Solar cells by design: photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe, Adv. Funct. Mater. 20 (2010) 1970–(1976).

DOI: https://doi.org/10.1002/adfm.200902234

[16] F. Hao, H. Lin, Y. Liu, et al., Facile construction of high-electrocatalytic bilayer counter electrode for efficient dye-sensitized solar cells, ACS Appl. Mater. Interfaces. 3 (2011) 3916–3920.

DOI: https://doi.org/10.1021/am200795k

[17] F. Hao, H. Lin, C. Zhou, et al., Bifunctional single-crystalline rutile nanorod decorated hetero- structural photoanodes for efficient dye-sensitized solar cells, Phys. Chem. Chem. Phys. 13 (2011) 15918-15924.

DOI: https://doi.org/10.1039/c1cp21833f

[18] Q. Wang, S. Ito, M. Grätzel, et al., Characteristics of high efficiency dye-sensitized solar cells, J. Phys. Chem. B, 110 (2006) 25210–25221.

[19] I. M. Seró, S. Gimenez, F. F. Santiago, R. Gomez, Q. Shen, T. Toyoda, J. Bisquert, Recombination in quantum dot sensitized solar cells, Acc. Chem. Res. 42 (2009) 1848–1857.

DOI: https://doi.org/10.1002/chin.201017271

[20] G. G. Belmontea, P. P. Boixa, J. Bisquerta, M. Sessolob, H. J. Bolink, Simultaneous determination of carrier lifetime and electron density-of-states in P3HT: PCBM organic solar cells under illumination by impedance spectroscopy, Sol. Eng. Mater. Sol. Cells. 94 (2010).

DOI: https://doi.org/10.1016/j.solmat.2009.10.015

[21] F. F. Santiago, G. G. Belmontea, I. M. Seró, J. Bisquert, Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy, Phys. Chem. Chem. Phys. 13 (2011) 9083-9118.

DOI: https://doi.org/10.1039/c0cp02249g