Ablation Property of ZrB2-SiC Composite Sharp Leading Edges with Varying Radiuses of Curvature under Oxy-Acetylene Torch


Article Preview

Ablation behavior of ZrB2-SiC sharp leading edges with five different curvature radiuses was investigated using an oxy-acetylene torch. During the test, the curvature radiuses were 0.15 mm, 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm, respectively. Under the same ablation condition, the smaller was the radius, the severer ablation underwent. The sharp leading edge with a curvature radius of 0.15 mm had the highest surface temperature and maximum surface temperature rising rate, exceeded 2100°C in less than 30 s. However, the surface of sharp leading edge with a curvature radius of 2.0 mm achieved only 1900°C in more than 60 s. After 5 min ablation, the mass and linear ablation rates were measured. All the five sharp leading edges evolved to nearly a same radius after ablation. The microstructure of the oxidation layers was also investigated. A ZrO2-SiO2 layer generated from oxidation of ZrB2-SiC acts as a thermal barrier and reduces the diffusion of oxygen.



Key Engineering Materials (Volumes 512-515)

Edited by:

Wei Pan and Jianghong Gong




R. J. He et al., "Ablation Property of ZrB2-SiC Composite Sharp Leading Edges with Varying Radiuses of Curvature under Oxy-Acetylene Torch", Key Engineering Materials, Vols. 512-515, pp. 710-714, 2012

Online since:

June 2012




[1] A.K. Kuriakose, J.L. Margrav, The Oxidation Kinetics of Zirconium Diboride and Zirconium Carbide at High Temperatures, J. Electrochem Soc. 111 (1964) 827-831.

DOI: https://doi.org/10.1149/1.2426263

[2] W.C. Tripp, H.H. Davis, H.C. Graham, Effect of a SiC Addition on the Oxidation of ZrB2, Am. Ceram. Soc. Bull, 52 (1973) 612-616.

[3] J.W. Hinze, W.C. Tripp, H.C. Graham, High Temperature Oxidation Behavior of a HfB2 Plus 20 v/o SiC Composite,J. Electrochem Soc. 122 (1975) 1249-1254.

[4] F. Monteverde, A. Bellosi, S. Guicciardi, Processing and Properties of Zirconium Diboride-based Composites, J. Eur. Ceram. Soc. 22 (2002) 279-288.

DOI: https://doi.org/10.1016/s0955-2219(01)00284-9

[5] F. Monteverde, The Thermal Stability in Air of Hot-pressed Diboride Matrix Composites for Uses at Ultra-high-temperatures, Corros. Sci. 47 (2005)2020-(2033).

DOI: https://doi.org/10.1016/j.corsci.2004.09.019

[6] S. Norasetthekul, P.T. Eubank, W.L. Bradley, B. Bozakurt, B. Stucker, Use of Zirconium Diboride-Copper as an Electrode in Plasma Applications, J. Mater. Sci. 34 (1999) 1261-1270.

[7] A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, D.T. Ellerby, High Strength Zirconium Diboride-Based Ceramics, J. Am. Ceram. Soc. 87 (2004) 1170-1172.

DOI: https://doi.org/10.1111/j.1551-2916.2004.01170.x

[8] W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J. A. Zaykoski, Refractory Diborides of Zirconium and Hafnium, J. Am. Ceram. Soc. 90 (2007) 1347-1364.

DOI: https://doi.org/10.1111/j.1551-2916.2007.01583.x

[9] F. Monteverde, R. Savino, Stability of Ultra-high-temperature ZrB2-SiC Ceramics under Simulated Atmospheric Re-entry Conditions, J. Eur. Ceram. Soc. 27 (2007) 4797-4805.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.02.201

[10] F. Monteverde, A. Bellosi, Oxidation of ZrB2-Based Ceramics in Dry Air, J. Electrochem. Soc. 150 (2003) B552-559.

DOI: https://doi.org/10.1149/1.1618226

[11] S.R. Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh, J.A. Salem, Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use, J. Eur. Ceram. Soc. 22 (2002) 2757-2767.

DOI: https://doi.org/10.1016/s0955-2219(02)00140-1

[12] K. Upadhya, J.M. Yang, W.P. Hoffman, Materials for Ultrahigh Temperature Structural Applications, Am. Ceram. Soc. Bull. 76 (1997) 51-56.

[13] P. Hu, G.L. Wang, Z. Wang, Oxidation Mechanism and Resistance of ZrB2-SiC Composites, Corro. Sci. 51 (2009) 2724-2732.

DOI: https://doi.org/10.1016/j.corsci.2009.07.005

[14] X.H. Zhang, P. Hu, J.C. Han, et al., Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmosphere Re-entry conditions, Comp. Sci. Techno. 68 (2008) 1718-1726.

DOI: https://doi.org/10.1016/j.compscitech.2008.02.009

[15] J.C. Han, P. Hu. X.H. Zhang, S.H. Meng, W.B. Han, Oxidation Resistant ZrB2-SiC Composites at 2200 ºC, Comp. Sci. Techno. 68 (2008) 799-806.

DOI: https://doi.org/10.1016/j.compscitech.2007.08.017

[16] J.C. Han, P. Hu. X.H. Zhang, S.H. Meng, Oxidation Behavior of Zirconium Diboride-Silicon Carbide at 1800 ºC, Scripta Mater. 57 (2007) 825-828.

DOI: https://doi.org/10.1016/j.scriptamat.2007.07.009

[17] R. Savino, F.M. De Stefano, D. Paterna, M. Serpico, Aerothermodynamic Study of UHTC-based Thermal Protection Systems, Aero Sci. Tech. 9 (2005) 151-160.

DOI: https://doi.org/10.1016/j.ast.2004.12.003

[18] R. Monti, F.M. De Stefano, R. Savino, in: AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technolo, AIAA (2005) 3265.

DOI: https://doi.org/10.2514/6.2005-3265

[19] M.J. Lewis, Sharp Leading Edge Hypersonic Vehicles in the Air and Beyond, SAE Trans. Forum 108 (1999) 841-851.

[20] Paul, F. Moffett, Aerothermal Performance Constraints for Hypervelocity Small Radius Unswept Leading Edges and Nosetips, NASA Technical Memorandum 112, 204. (1997).