A Novel Fabrication Process of Large Area Triangular Nanocavity Arrays by Bilayer Nanosphere Lithography

Abstract:

Article Preview

A simple and novel self-assembly based process is presented in this paper for the fabrication of gold triangular nanocavity arrays. This process combines nanosphere lithography (NSL) with some standard MEMS technologies. A carboxylated polystyrene (PS) nanosphere bilayer with a relatively large area is fabricated on silicon wafer as the starting template by spin-coating. Oxygen plasma etching, metal deposition and lifting-off of the PS upper layer are then orderly carried out for the formation of triangular space, which is made up of Cr film and the remaining PS nanoparticles. Then silicon etching is used to transfer the triangle pattern onto the silicon wafer. Finally, a 50 nm thick gold layer is deposited on the pattern to fabricate gold triangular nanocavity arrays. With this strategy, both the period and the cavity size can be adjusted independently. This will allow the tuning of the optical properties for desired application.

Info:

Periodical:

Edited by:

W.B. Lee, C.F. Cheung and S. To

Pages:

447-451

Citation:

C. G. Wang et al., "A Novel Fabrication Process of Large Area Triangular Nanocavity Arrays by Bilayer Nanosphere Lithography", Key Engineering Materials, Vol. 516, pp. 447-451, 2012

Online since:

June 2012

Export:

Price:

$41.00

[1] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature 391(1998) 667-669.

DOI: https://doi.org/10.1038/35570

[2] T. Lin, N.C. Linn, L. Taraiano, B. Jiang, P. Jiang, Electrochemical SERS at periodic metallic nanopyramid arrays, J. Phys. Chem. C 113(2009) 1367-1372.

DOI: https://doi.org/10.1021/jp809363m

[3] S. Roh, T. Chung, B. Lee, Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors, Sensors 11(2011) 1565-1588.

DOI: https://doi.org/10.3390/s110201565

[4] K.Q. Peng, X. Wang, L. Li, X.L. Wu, S.T. Lee, High-performance silicon nanohole solar cells, J. Am. Chem. Soc. 132(2010) 6872-6873.

[5] F.M. Huang, T.S. Kao, V.A. Fedotov, Y.F. Chen, N.I. Zheludev, Nanohole array as a lens, Nano Lett. 8(2008) 2469-2472.

DOI: https://doi.org/10.1021/nl801476v

[6] J.H. Kim, P.J. Moyera, Transmission characteristics of metallic equilateral triangular nanohole arrays, Apl. Phys. Lett. 89 (2006) 121106.

DOI: https://doi.org/10.1063/1.2355468

[7] E.M. Hicks, O. Lyandres, W.P. Hall, S.L. Zou, M.R. Glucksberg, R.P. Van Duyne, Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography, J. Phys. Chem. C 111(2007) 4116-4124.

DOI: https://doi.org/10.1021/jp064094w

[8] M.J.K. Klein, M. Guillaumee, B. Wenger, L.A. Dunbar, J. Brugger, H. Heinzelmann, R. Pugin. Inexpensive and fast wafer-scale fabrication of nanohole arrays in thin gold films for plasmonics, Nanotechnology 21(2010) 205301.

DOI: https://doi.org/10.1088/0957-4484/21/20/205301

[9] M. Giuliani, W. Gonzalez-Vinas, K.M. Poduska, A. Yethiraj, Dynamics of crystal structure formation in spin-coated colloidal films, J. Phys. Chem. Lett. 1(2010) 1481-1486.

DOI: https://doi.org/10.1021/jz1002605

[10] S.M. Yang, S.G. Jang, D.G. Choi, S. Kim, H.K. Yu. Nanomachining by colloidal lithography, Small 2(2006) 458-475.