A Newly Developed Biocompatible Titanium Alloy and its Scaffolding by Powder Metallurgy

Abstract:

Article Preview

Titanium and some of its alloys have received considerable attention for biomedical applications in recent years due to their excellent biocompatibility, high corrosion resistance and relatively low elastic modulus when compared to other metallic implant materials such as Co-Cr alloys and stainless steels. However, these alloys can still suffer from inadequate biocompatibility; lack of biological fixation and biomechanical mismatch with the properties of bone in vivo. In this study, a new biocompatible Ti alloy, Ti4Ta4Sn, consisting of alpha and beta phases was fabricated and their mechanical properties were investigated. Moreover, the Ti alloy was scaffolded into a porous structure using powder metallurgy with an architecture and elastic modulus mimicking those of cancellous bone. Cell culture results indicated that the new porous Ti alloy scaffold possesses excellent in vitro biocompatibility.

Info:

Periodical:

Edited by:

Ma Qian

Pages:

201-207

Citation:

C.'e Wen and Y. C. Li, "A Newly Developed Biocompatible Titanium Alloy and its Scaffolding by Powder Metallurgy", Key Engineering Materials, Vol. 520, pp. 201-207, 2012

Online since:

August 2012

Export:

Price:

$38.00

[1] Y.M. Kim, H. Takadama, T. Kokubo, S. Nishiguchi, T. Nakamura, Formation of a graded bioactive surface structure on Ti-15Mo-5Zr-3Al alloy by chemical treatment, Biomaterials 21(2000) 353-358.

DOI: https://doi.org/10.1016/s0142-9612(99)00190-8

[2] M. Long, H.J. Rack, Titanium Alloy in Total Joint Replacement- A Materials Science Perspective, Biomaterials 19(1998) 1621-1639.

DOI: https://doi.org/10.1016/s0142-9612(97)00146-4

[3] K. Wang, The use of titanium for medical applications in the USA, Mater. Sci. Eng. A 213 (1996) 134-137.

[4] S.G. Steinemann, Compatibility of titanium in soft and hard tissue – the ultimate is osseointegration. In: Stallforth H, Revell P, editors. Materials for medical engineering, Euromat'99. Weinheim: Wiley-VCH, 1999. pp.199-203.

DOI: https://doi.org/10.1002/3527606149.ch28

[5] Y. Okazaki, E. Gotoh, Comparison of metal release from various metallic biomaterials in vitro, Biomaterials 26(2005) 11-21.

DOI: https://doi.org/10.1016/j.biomaterials.2004.02.005

[6] Y. Okazaki, S. Rao, T. Tateishi, Y. Ito, Cytocompatibility of various metal and development of new titanium alloys for medical implants. Mater. Sci. Eng. A 243(1998) 250-256.

DOI: https://doi.org/10.1016/s0921-5093(97)00809-5

[7] M. Niinomi, Recent metallic materials for biomedical applications, Metall. Mater. Trans. A33(2002) 477–486.

[8] M.A. Imam, C.M. Gilmore, Fatigue and microstructural properties of quenched Ti–6Al–4V. Metall. Trans. 14A(1983) 233–240.

DOI: https://doi.org/10.1007/bf02651620

[9] J. Breme, Titanium and Titanium Alloys, Biomaterials of Preference, in Proc. of the 6th World Conf. on Ti, 1 (1988) 57-68.

[10] X.J. Wang, Y.C. Li, P.D. Hodgson, C.E. Wen, Nano- and macro-scale characterisation of the mechanical properties of bovine bone, Materials Forum 31(2007) 156-159.

[11] J.D. Bobyn, E.S. Mortimer, A.H. Glassman, C.A. Engh, J. Miller and C. Brooks, Producing and avoiding stress shielding: laboratory and clinical observation of noncemented total hip arthroplasty, Clin. Orthop. Relat. Res. 274(1992) 79-96.

DOI: https://doi.org/10.1097/00003086-199201000-00010

[12] K.K. Wang, L.J. Gustavson, J.H. Dumbleton, Microstructure and properties of a new beta titanium alloy, Ti-12Mo-6Zr-2Fe, developed for surgical implants, in: S.A. Brown, J.E. Lemons (Eds. ), Medical applications of titanium and its alloy, ASTM STP 1272(1996).

DOI: https://doi.org/10.1520/stp16071s

[13] A.K. Mishra, J.A. Davidson, R.A. Poggie, P. Kovacs, T.J. FitzGerald, Mechanical and tribological properties and biocompatibility of diffusion hardened Ti-13Nb-13Zr - a new titanium alloy for surgical implants, in: S.A. Brown, J.E. Lemons (Eds. ), Medical applications of titanium and its alloy, ASTM STP 1272 (1996).

DOI: https://doi.org/10.1520/stp16073s

[14] M. Niinomi, Cyto-toxicity and fatigue performance of low rigidity titanium alloy, Ti-29Nb-13Ta-4. 6Zr, for biomedical applications, Biomaterials 24 (2003) 2673-2683.

DOI: https://doi.org/10.1016/s0142-9612(03)00069-3

[15] T. Ahmed, M. Long, J. Silvestri, C. Ruiz and H.J. Rack, Presented at the 8th would Titanium Conference, Birmingham, UK, Oct. (1995).

[16] C. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, Processing of biocompatible porous Ti and Mg. Scripta Mater. 45(2001) 1147-53.

DOI: https://doi.org/10.1016/s1359-6462(01)01132-0

[17] C. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, Novel titanium foam for bone tissue engineering. J. Mater. Res. 17(2002) 2633-2639.

DOI: https://doi.org/10.1557/jmr.2002.0382

[18] D.C. Dunand, Processing of titanium foams. Adv. Eng. Mater. 6(2004) 369-376.

[19] X. Li, C. Wang, W. Zhang, Y. Li, Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process, Mater. Lett. 63(2009) 403-5.

DOI: https://doi.org/10.1016/j.matlet.2008.10.065

[20] B.Y. Li, L.J. Rong, Y.Y. Li, V.E. Gjunter, A recent development in producing porous Ni-Ti shape memory alloys. Intermetallics 8(2000) 881-884.

DOI: https://doi.org/10.1016/s0966-9795(00)00024-8

[21] A. Bansiddhi, D.C. Dunand, Shape-memory NiTi foams produced by replication of NaCl space-holder, Acta Biomater. 4(2008) 1996-(2007).

DOI: https://doi.org/10.1016/j.actbio.2008.06.005

[22] C.L. Chu, C.Y. Chung, P.H. Lin, S.D. Wang, Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis, Mater. Sci. Eng. A 366(2004) 114-119.

DOI: https://doi.org/10.1016/j.msea.2003.08.118

[23] L.G. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. Cambridge University Press, Cambridge, U.K., (1997).

[24] M. Morinaga, H. Yukawa, Alloy design with the aid of molecular orbital method. Bull. Mater. Sci. 20(6)(1997) 805-815.

DOI: https://doi.org/10.1007/bf02747420

[25] M. Abdel-Hady, K. Hinoshita, M Morinaga, General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr. Mater. 55(5)(2006) 477-480.

DOI: https://doi.org/10.1016/j.scriptamat.2006.04.022

[26] J.T. Clemow, A.M. Weinstein, J.J. Klawitter, J. Koeneman, J. Anderson, Interface Mechanics of Porous Titanium Implants, J. Biomed. Mater. Res. 15(1981) 73-82.

DOI: https://doi.org/10.1002/jbm.820150111

[27] International organization for Standardization. Biological evaluation of medical devices-Part 5: Test for in vitro Cytotoxicity. (1999).

[28] Y. Li, C.S. Wong, J. Xiong, P.D. Hodgson, C. Wen, Cytotoxicity of titanium and titanium alloying elements. J. Dent. Res. 89(2010) 493-497.

DOI: https://doi.org/10.1177/0022034510363675

Fetching data from Crossref.
This may take some time to load.