Nanoscale SiO2/ZrO2 Particulate-Reinforced Titanium Composites for Bone Implant Materials

Abstract:

Article Preview

The mechanical property of porous pure titanium (Ti) scaffold with high porosity might become poorer than that of natural bone. In this study, new Ti-based biocompatible composites were developed to simultaneously meet the requirements of low elastic modulus and appropriate strength for implant materials when they are scaffolded into a porous structure. The nanoscale particulate-reinforced Ti-based composites with different concentrations of oxide particles such as SiO2 and ZrO2 were prepared using a powder metallurgical method. The strengths of the new nanoscale particulate-reinforced titanium composites were found to be significantly higher than that of pure Ti. Cell culture results revealed that the nanoscale particulate-reinforced titanium composites showed excellent biocompatibility and cell adhesion. Human SaOS2 osteoblast-like cells grew and spread well on the surfaces of the new titanium composites. The nanoscale SiO2 and ZrO2 particulate-reinforced titanium composites are promising materials that have great potential for use as an orthopedic implant material.

Info:

Periodical:

Edited by:

Ma Qian

Pages:

242-247

DOI:

10.4028/www.scientific.net/KEM.520.242

Citation:

Y. C. Li et al., "Nanoscale SiO2/ZrO2 Particulate-Reinforced Titanium Composites for Bone Implant Materials", Key Engineering Materials, Vol. 520, pp. 242-247, 2012

Online since:

August 2012

Export:

Price:

$35.00

[1] K. Wang, The use of titanium for medical applications in the USA, Mater. Sci. Eng. A 213 (1996) 134-137.

[2] D. F. Williams, Titanium and titanium alloys, biocompatibility of clinical implant materials, CRC Press Inc., (1982).

[3] J. D. Currey, Bones Structure and Mechanics, Second edn, Princeton Uinversity Press, (2006).

[4] Y. Li, J. Xiong, C. S. Wong, P. D. Hodgson, C. E. Wen, Ti6Ta4Sn Alloy and Subsequent Scaffolding for Bone Tissue Engineering, Tiss. Eng. A 15 (2009) 3151-3159.

DOI: 10.1089/ten.tea.2009.0150

[5] Y. Li, J. Xiong, P. D. Hodgson, C. E. Wen, Effects of structural property and surface modification of Ti6Ta4Sn scaffolds on the response of SaOS2 cells for bone tissue engineering, J. Alloys Compds. 494 (2010) 323-329.

DOI: 10.1016/j.jallcom.2010.01.026

[6] L. G. Gibson, M. F. Ashby. Cellular Solids: Structure and Properties, Cambridge University Press, (1997).

[7] C. E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, Novel titanium foam for bone tissue engineering, J. Mater. Res. 17 (2002) 2633-2639.

DOI: 10.1557/jmr.2002.0382

[8] S. Esmaeelzadeh, A. Simchi, D. Lehmhus, Porous metals and metal foaming technology, 101-106, Japan Institute of Metals, (2005).

[9] M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. N. G. Wadlry, Metal foams: a design guide, Butterworth-Heinemann, (2000).

[10] Y. C. Li, J. Y. Xiong, J. G. Lin, M. Forrest, P. D. Hodgson, C. E. Wen, Mechanical properties and energy absorption of ceramic particulate and resin-impregnation reinforced aluminium foams, Mater. Forum 31 (2007) 52-56.

[11] S. Ranganath, Review on particulate-reinforced titanium matrix composites, J. Mater. Sci. 32 (1997) 1-16.

[12] X. Wang, Y. Li, J. Xiong, P. D. Hodgson, C. E. Wen, Porous TiNbZr alloy scaffolds for biomedical applications, Acta Biomater. 5 (2009) 3616-3624.

DOI: 10.1016/j.actbio.2009.06.002

[13] S. B. Rodan, Y. Imai, M. A. Thiede, G. Wesolowski, D. Thompson, Z. Bar-Shavit, S. Shull, K. Mann, G. A. Rodan, Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties, Cancer res. 47 (1987) 4961-4966.

[14] I. Izquierdo-Barba, F. Conde, N. Olmo, M. A. Lizarbe, M. A. Garcia, M. Vallet-Regi, Vitreous SiO2-CaO coatings on Ti6Al4V alloys: Reactivity in simulated body fluid versus osteoblast cell culture, Acta Biomater. 2 (2006) 445-455.

DOI: 10.1016/j.actbio.2006.02.002

[15] D. Lukito, J. M. Xue, J. Wang, In vitro bioactivity assessment of 70 (wt. )%SiO2-30 (wt. )%CaO bioactive glasses in simulated body fluid, Mater. Lett. 59 (2005) 3267-3271.

DOI: 10.1016/j.matlet.2005.05.055

[16] W. Que, Z. Sun, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Optical and mechanical properties of TiO2/SiO2/organically modified silane composite films prepared by sol-gel processing, Thin. Solid. Films 359 (2000) 177-183.

DOI: 10.1016/s0040-6090(99)00746-4

[17] Y. C. Li, J. Y. Xiong, C. S. Wong, P. D. Hodgson, C. E. Wen, Bioactivating the surfaces of titanium by sol-gel process, Mater. Sci. Forum 614 (2009) 67-71.

DOI: 10.4028/www.scientific.net/msf.614.67

[18] Y. Li, C. Wong, J. Xiong, P. Hodgson, C. Wen, Cytotoxicity of titanium and titanium alloying elements, J. Dent. Res. 89 (2010) 493-497.

DOI: 10.1177/0022034510363675

[19] A. Yamamoto, R. Honma, S. M., Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells, J. Biomed. Mater. Res. 39 (1998) 331-340.

DOI: 10.1002/(sici)1097-4636(199802)39:2<331::aid-jbm22>3.0.co;2-e

[20] W. Geurtsen, Biocompatibility of dental casting alloys, Cri. Rev. Oral Biology & Med. 13 (2002) 71-84.

[21] H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium, Biomaterials 22 (2001) 1253-1262.

DOI: 10.1016/s0142-9612(00)00275-1

In order to see related information, you need to Login.