Nanoscale SiO2/ZrO2 Particulate-Reinforced Titanium Composites for Bone Implant Materials


Article Preview

The mechanical property of porous pure titanium (Ti) scaffold with high porosity might become poorer than that of natural bone. In this study, new Ti-based biocompatible composites were developed to simultaneously meet the requirements of low elastic modulus and appropriate strength for implant materials when they are scaffolded into a porous structure. The nanoscale particulate-reinforced Ti-based composites with different concentrations of oxide particles such as SiO2 and ZrO2 were prepared using a powder metallurgical method. The strengths of the new nanoscale particulate-reinforced titanium composites were found to be significantly higher than that of pure Ti. Cell culture results revealed that the nanoscale particulate-reinforced titanium composites showed excellent biocompatibility and cell adhesion. Human SaOS2 osteoblast-like cells grew and spread well on the surfaces of the new titanium composites. The nanoscale SiO2 and ZrO2 particulate-reinforced titanium composites are promising materials that have great potential for use as an orthopedic implant material.



Edited by:

Ma Qian






Y. C. Li et al., "Nanoscale SiO2/ZrO2 Particulate-Reinforced Titanium Composites for Bone Implant Materials", Key Engineering Materials, Vol. 520, pp. 242-247, 2012

Online since:

August 2012




[1] K. Wang, The use of titanium for medical applications in the USA, Mater. Sci. Eng. A 213 (1996) 134-137.

[2] D. F. Williams, Titanium and titanium alloys, biocompatibility of clinical implant materials, CRC Press Inc., (1982).

[3] J. D. Currey, Bones Structure and Mechanics, Second edn, Princeton Uinversity Press, (2006).

[4] Y. Li, J. Xiong, C. S. Wong, P. D. Hodgson, C. E. Wen, Ti6Ta4Sn Alloy and Subsequent Scaffolding for Bone Tissue Engineering, Tiss. Eng. A 15 (2009) 3151-3159.

DOI: 10.1089/ten.tea.2009.0150

[5] Y. Li, J. Xiong, P. D. Hodgson, C. E. Wen, Effects of structural property and surface modification of Ti6Ta4Sn scaffolds on the response of SaOS2 cells for bone tissue engineering, J. Alloys Compds. 494 (2010) 323-329.

DOI: 10.1016/j.jallcom.2010.01.026

[6] L. G. Gibson, M. F. Ashby. Cellular Solids: Structure and Properties, Cambridge University Press, (1997).

[7] C. E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, Novel titanium foam for bone tissue engineering, J. Mater. Res. 17 (2002) 2633-2639.

DOI: 10.1557/jmr.2002.0382

[8] S. Esmaeelzadeh, A. Simchi, D. Lehmhus, Porous metals and metal foaming technology, 101-106, Japan Institute of Metals, (2005).

[9] M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. N. G. Wadlry, Metal foams: a design guide, Butterworth-Heinemann, (2000).

[10] Y. C. Li, J. Y. Xiong, J. G. Lin, M. Forrest, P. D. Hodgson, C. E. Wen, Mechanical properties and energy absorption of ceramic particulate and resin-impregnation reinforced aluminium foams, Mater. Forum 31 (2007) 52-56.

[11] S. Ranganath, Review on particulate-reinforced titanium matrix composites, J. Mater. Sci. 32 (1997) 1-16.

[12] X. Wang, Y. Li, J. Xiong, P. D. Hodgson, C. E. Wen, Porous TiNbZr alloy scaffolds for biomedical applications, Acta Biomater. 5 (2009) 3616-3624.

DOI: 10.1016/j.actbio.2009.06.002

[13] S. B. Rodan, Y. Imai, M. A. Thiede, G. Wesolowski, D. Thompson, Z. Bar-Shavit, S. Shull, K. Mann, G. A. Rodan, Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties, Cancer res. 47 (1987) 4961-4966.

[14] I. Izquierdo-Barba, F. Conde, N. Olmo, M. A. Lizarbe, M. A. Garcia, M. Vallet-Regi, Vitreous SiO2-CaO coatings on Ti6Al4V alloys: Reactivity in simulated body fluid versus osteoblast cell culture, Acta Biomater. 2 (2006) 445-455.

DOI: 10.1016/j.actbio.2006.02.002

[15] D. Lukito, J. M. Xue, J. Wang, In vitro bioactivity assessment of 70 (wt. )%SiO2-30 (wt. )%CaO bioactive glasses in simulated body fluid, Mater. Lett. 59 (2005) 3267-3271.

DOI: 10.1016/j.matlet.2005.05.055

[16] W. Que, Z. Sun, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Optical and mechanical properties of TiO2/SiO2/organically modified silane composite films prepared by sol-gel processing, Thin. Solid. Films 359 (2000) 177-183.

DOI: 10.1016/s0040-6090(99)00746-4

[17] Y. C. Li, J. Y. Xiong, C. S. Wong, P. D. Hodgson, C. E. Wen, Bioactivating the surfaces of titanium by sol-gel process, Mater. Sci. Forum 614 (2009) 67-71.

DOI: 10.4028/

[18] Y. Li, C. Wong, J. Xiong, P. Hodgson, C. Wen, Cytotoxicity of titanium and titanium alloying elements, J. Dent. Res. 89 (2010) 493-497.

DOI: 10.1177/0022034510363675

[19] A. Yamamoto, R. Honma, S. M., Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells, J. Biomed. Mater. Res. 39 (1998) 331-340.

DOI: 10.1002/(sici)1097-4636(199802)39:2<331::aid-jbm22>;2-e

[20] W. Geurtsen, Biocompatibility of dental casting alloys, Cri. Rev. Oral Biology & Med. 13 (2002) 71-84.

[21] H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium, Biomaterials 22 (2001) 1253-1262.

DOI: 10.1016/s0142-9612(00)00275-1

In order to see related information, you need to Login.