Mechanical Property and Microstructure of Ti-Ta-Ag Alloy for Biomedical Applications

Abstract:

Article Preview

Ti and some of its alloys (e.g. Ti–6Al–4V alloy) have become the metals of choice for the endosseous parts of presently available dental implants. In the present study, Ti-Ta-Ag alloys with a different Ag content were prepared using vacuum sintering (VS) and spark plasma sintering (SPS) process. The microstructure and mechanical properties of the Ti-Ta-Ag alloys were investigated. The results show that dense Ti-Ta-Ag alloys prepared using the SPS process exhibit high hardness and a suitable elastic modulus for implant materials for load-bearing applications. The effect of preparation methods on the microstructure of Ti-Ta-Ag alloys is discussed.

Info:

Periodical:

Edited by:

Ma Qian

Pages:

254-259

DOI:

10.4028/www.scientific.net/KEM.520.254

Citation:

M. Wen et al., "Mechanical Property and Microstructure of Ti-Ta-Ag Alloy for Biomedical Applications", Key Engineering Materials, Vol. 520, pp. 254-259, 2012

Online since:

August 2012

Export:

Price:

$38.00

[1] L.L. Hench, Bioceramics, J. Am. Ceram. Soc. 81 (1998) 1705-1728.

[2] T. Kokubo, H.M. Kim, M. Kawashita, T. Nakamura, Bioactive metals: preparation and properties, J. Mater. Sci.: Mater. Med. 15 (2004) 99-107.

[3] X.Y. Liu, P.K. Chu, C.X. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical application, Mater. Sci. Eng. R. 47 (2004) 49–121.

DOI: 10.1016/j.mser.2004.11.001

[4] W. Österle, D. Klaffke, M. Griepentrog, U. Gross, I. Kranz, Ch. Knabe, Potential of wear resistant coatings on Ti–6Al–4V for artificial hip joint bearing surfaces, Wear 264 (2008) 505–517.

DOI: 10.1016/j.wear.2007.04.001

[5] C.E. Wen, J.Y. Xiong, Y.C. Li, P.D. Hodgson, Porous shape memory alloy scaffolds for biomedical applications: a review, Physica Scr. T139 (2010) 014070.

DOI: 10.1088/0031-8949/2010/t139/014070

[6] X.J. Wang, Y.C. Li, J.Y. Xiong, P.D. Hodgson, C.E. Wen, Porous TiNbZr alloy scaffolds for biomedical applications, Acta Biomater. 5 (2009) 3616-3624.

DOI: 10.1016/j.actbio.2009.06.002

[7] H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, S. Miyazaki, Martensitic transformation, shape memory effects and superelasticity of Ti-Nb binary alloys, Acta Mater. 54 (2006) 2419-2429.

DOI: 10.1016/j.actamat.2006.01.019

[8] P.J.S. Buenconsejo, H.Y. Kim, H. Hosoda, S. Miyazaki, Shape memory behavior of Ti-Ta and its potential as a high-temperature shape memory alloy, Acta Mater. 57 (2009) 1068-1077.

DOI: 10.1016/j.actamat.2008.10.041

[9] N. Rameshbabu, T.S. Sampath Kumar, T.G. Prabhakar, V.S. Sastry, K.V.G.K. Murty, K. Prasad Rao, Antibacterial nanosized silver substituted hydroxyapatite: Synthesis and characterization, J. Biomed. Mater. Res. A, 80 (2007) 581-591.

DOI: 10.1002/jbm.a.30958

[10] S.D. Numzio, C.V. Brovarone, S. Spriano, D. Milanses, E. Verné, V. Bergo, G. Maina, P. Spinelli, Silver containing bioactive glasses prepared by molten salt ion-exchange, J. Eur. Ceram. Soc., 24 (2004) 2935-2942.

DOI: 10.1016/j.jeurceramsoc.2003.11.010

[11] T.T. Sasaki, K. Hono, J. Vierke, M. Wollgarten, J. Banhart, Bulk nanocrystalline Al85Ni10La5 alloy fabricated by spark plasma sintering of atomized amorphous powders, Mater. Sci. Eng. A 490 (2008) 343-350.

DOI: 10.1016/j.msea.2008.01.059

[12] U.A. Tamburini, J.E. Garay, Z.A. Munir, A. Tacca, F. Maglia, G. Chiodelli, G. Spinolo, Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part II. Characterization studies, J. Mater. Res. 19 (2004).

DOI: 10.1557/jmr.2004.0424

[13] P. Angerer, L.G. Yu, K.A. Khor, G. Krumpel, Spark-plasma-sintering (SPS) of nanostructured and submicron titanium oxide powders, Mater. Sci. Eng. A 381 (2004) 16-19.

DOI: 10.1016/j.msea.2004.02.009

[14] Maeshima, M. Nishida, Shape memory properties of biomedical Ti-Mo-Ag and Ti-Mo-Sn alloys, Mater. Trans., 45 (2004) 1096-1100.

DOI: 10.2320/matertrans.45.1096

[15] M. Omori, Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS), Mater. Sci. Eng. A., 287 (2000) 183-188.

DOI: 10.1016/s0921-5093(00)00773-5

[16] Z. A Munir., U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci., 41 (2006) 763-777.

DOI: 10.1007/s10853-006-6555-2

In order to see related information, you need to Login.