Nanostructured Surfaces that Show Antimicrobial, Anticorrosive, and Antibiofilm Properties


Article Preview

Provided in this article are the quantitative and qualitative morphological results describing the action of several nanostructured surfaces for bactericidal and bacteriostatic action. Results are also provided to illustrate microbial corrosion and its impact. Biofilm formation is correlated to colony formation. Nanostructured surfaces, i.e. surfaces with welded nanoparticles are noted to display biocidal activity with varying efficacies. Porous nanostructures, on stainless steel and copper substrates, made of high purity Ag, Ti, Al, Cu, MoSi2, and carbon nanotubes, are tested for their efficacy against bacterial colony formation for both gram-negative, and gram-positive bacteria. Silver and Molybdenum disilicide (MoSi2) nanostructures are found to be the most effective bactericidal agents with MoSi2 being particularly effective in both low and high humidity conditions. Bacteriostatic activity is also noted. The nanostructured surfaces are tested by controlled exposures to several microbial species including (Gram+ve) bacteria such as Bacillus Cereus and (Gram-ve) bacteria such as Enterobacter Aerogenes. The resistance to simultaneous exposure from diverse bacterial species including Arthrobacter Globiformis, Bacillus Megaterium, and Cupriavidus Necator is also studied. The nanostructured surfaces were found to eliminates or delay bacterial colony formation, even with short exposure times, and even after simulated surface abrasion. The virgin 316 stainless steel and copper substrates, i.e. without the nanostructure, always displayed rapid bacterial colony evolution indicating the lack of antimicrobial action. The efficacy of the nanostructured surface against colony formation (bacterial recovery) for E-Coli (two strains) and virus Phi 6 Bacteriophage with a host Pseudomonas Syringae was also studied. Preliminary results are presented that also show possible anti-fungal properties by the nanostructured MoSi2. When comparing antimicrobial efficacy of flat polished surfaces (no curvature or nanostructure) with nanostructure containing surfaces (high curvature) of the same chemistry, shows that bacterial action results from both the nanostructure size and chemistry.



Edited by:

M. Nadagouda, M. Connelly, B. Derin, H.P. Li and J.A. Sekhar




G.S. Reddy et al., "Nanostructured Surfaces that Show Antimicrobial, Anticorrosive, and Antibiofilm Properties", Key Engineering Materials, Vol. 521, pp. 1-33, 2012

Online since:

August 2012




Fetching data from Crossref.
This may take some time to load.