Investigation on Surface and Biological Properties of Silver Containing Diamond Like Carbon Films on Polyethylene Terephthalate Film Surface by Hybrid Reactive Sputtering Method


Article Preview

Silver containing diamond like carbon films were coated on the surface of polyethylene film (PET) using novel hybrid sputtering method. Polymeric substrates can create soft, flexible, highly absorbent and cost-effective materials by selecting or controlling their molecular structures. The material silver is known to be a potential antibacterial material. The silver containing coating has been potentially recommended for synthesis biomedical materials. In the present work, we discussed the antibacterial activity of the silver containing DLC film coated PET film surfaces which was coated as a function of deposition power level. The surface morphology of the Ag-DLC was analysed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The atomic concentration and structure of the Ag-DLC was measured by energy dispersive X-ray (EDX) and Raman spectroscopy. The hydrophilicity of the films was measured by contact angle analysis. The antibacterial activity of Ag–DLC films were evaluated by bacterial eradication tests with Escherichia coli at incubation time of one day. In addition, blood compatibility of the Ag-DLC films were studied by In Vitro blood compatibility tests. It was found that the surface of the obtained Ag-DLC decreases with increasing the deposition power level. The antibacterial and hemocompatibility of the silver containing DLC film increase gradually with increase of deposition power level. Our results revealed that the Ag-incorporated DLC films are potentially useful as biomedical devices having good antibacterial and hemocompatibility.



Edited by:

M. Nadagouda, M. Connelly, B. Derin, H.P. Li and J.A. Sekhar




K. N. Pandiyaraj et al., "Investigation on Surface and Biological Properties of Silver Containing Diamond Like Carbon Films on Polyethylene Terephthalate Film Surface by Hybrid Reactive Sputtering Method", Key Engineering Materials, Vol. 521, pp. 191-205, 2012

Online since:

August 2012




[1] Y. Ohgoe, S. Kobayashi, K. Ozeki, H. Aoki, H. Nakamori, K.K. Hirakuri, O. Miyashita, Thin Solid Films 497 (2006) 218–222.


[2] A. Grill, Diamond Relat. Mater. 12 (2003) 166–170.

[3] S. Kobayashi, Y. Ohgoe, K. Ozeki, K. Sato, T. Sumiya, K.K. Hirakuri, H. Aoki, Diamond Relat. Mater. 14 (2005) 1094–1097.


[4] K. Ozeki, K.K. Hirakuri, Appli Surf Sci, 254 (2008) 1614–1621.

[5] R. Hauert, Diamond Relat Mater, 12 (2003) 583–589.

[6] Geoffrey Dearnaley , James H. Arps, Surf. Coat Technol , 200 (2005) 2518 – 2524.

[7] E. Salgueiredo , M. Vila , M.A. Silva, M.A. Lopes c, J.D. Santos , F.M. Costa , R.F. Silva , P.S. Gomes , M.H. Fernandes , Diamond Relat Mater, 17 (2008) 878–881.


[8] A. Alanazi, C. Nojiri, T. Kido, T. Noguchi, Y. Ohgoe, T. Matsuda, K. Hirakuri, A. Funakubo, K. Sakai, Y. Fukui, Artif. Organs 24 (2000) 624–627.


[9] K. Yamazaki, P. Litwak, O. Tagusari, T. Mori, K. Kono, M. Kameneva, M. Watach, L. Gordon, M. Miyagishima, J. Tomioka, M. Umezu, E. Outa, J.F. Antaki, R.L. Kormos, H. Koyanagi, B.P. Griffith, Artif. Organs 22 (1998) 466–474.


[10] F.R. Marciano , L.F. Bonetti , L.V. Santos , N.S. Da-Silva , E.J. Corat, V.J. Trava-Airoldi, Diamond Relat Mater , 18 (2009) 1010–1014.

[11] Hsin-Chung Cheng, Shi-Yung Chiou, Chung-Ming Liue, J. Alloys Compd, 477 (2009) 931.

[12] M.H. Brober, Nygern , Biomaterials, 22(2001)2403.

[13] G. Francz , A. Schroeder, R. Hauert , Surf. Interf. Anal, 28(1999)3.

[14] Geoffrey Dearnaley, James H. Arps, Surface & Coatings Technology 200 (2005) 2518 – 2524.

[15] J.L. Endrino, R. Escobar Galindo, H. -S. Zhang, M. Allen, R. Gago, A. Espinosa, A. Anders, Surf. Coat. Technol. 202 (2008) 3675.

[16] I. Kleps, M. Danila, A. Angelescu, M. Miu, M. Simion, T. Ignat, A. Bragaru, L. Dumitru, G. Teodosiu, Mater. Sci. Eng. C 27 (2007) 1439.


[17] M.L. Morrison, R.A. Buchanan, P.K. Liaw, C.J. Berry, R.L. Brigmon, L. Riester, H. Abernathy, C. Jin, R.J. Narayan, Diamond Relat. Mater. 15 (2006) 138.

[18] R.J. Narayan, Diamond Relat. Mater. 14 (2005) 1319.

[19] Geoffrey Dearnaley, James H. Arps, Surface & Coatings Technology 200 (2005) 2518.

[20] Heon Woong Choi, Reinhold H. Dauskardt, Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu Hwan Oh, Diamond Relat. Mater, 17 (2008) 252-257.


[21] N.V. Bhat, R.R. Deshmukh, Indian J. Pure Appl. Phys. 40 (2002) 361.

[22] RajendraR. Deshmukh, NarendraV. Bhat, Mat. Res. Innovat, 7 (2003) 283.

[23] Inn-Kyu Kang, OhHyeong Kwon, MoonKyu Kim, YoungMoo Lee, YongKiel Sung, Biomaterials 18 (1997) 1099.

[24] Ionut Topala, Nicoleta Dumitrascu, Valentin Pohoata, Plasma Chem. Plasma Process. 27 (2007) 95.


[25] F.J. Boerio, S.K. Bahl, G.E. McGraw, J. Polym. Sci. Polym. Phys. Ed. 14 (1976) 1029. 438.

[26] C.T. Guo, K. -H. Dittrich, Appl. Surf. Sci. 253 (2007) 4935. 439.

[27] A.C. Ferrari, J. Robertson, Phys. Rev. B 64 (2001) 075414.

[28] R.N. Wenzel, Ind. Eng. Chem. 28 (1936) 988.

[29] Jung Yong Chae, Bhushan Bharat. Nanotechnology, 17(2006)4970.

[30] M.L. Mittal editor. Contact angle, wettability and adhesion. The Netherlands: VSP; (2003).

[31] S.H. Anastasiadis, J Rheol, 42 (1998) 795.

Fetching data from Crossref.
This may take some time to load.