Rapid Planarization Method by Ultraviolet Light Irradiation for Gallium Nitride Using Platinum Catalyst

Abstract:

Article Preview

We have developed a chemical process for atomic planarization of gallium nitride (GaN) using a platinum catalyst and ultraviolet (UV) light irradiation. The process is mediated by a hydrolysis reaction catalyzed by platinum as a solid catalyst. Because the reaction occurs selectively from the step edges, a flat surface composed of a straight step-and-terrace structure is obtained. In the absence of UV light, owing to the low step edge density, the removal rate is quite slow, approximately 1 nm/h. In contrast, under UV light, etch pits are formed on the terraces by photo-electrochemical etching causing an increase in the step edge density. We achieved surface planarization with a removal rate of 9.6 nm/h assisted by irradiation with UV light.

Info:

Periodical:

Key Engineering Materials (Volumes 523-524)

Edited by:

Tojiro Aoyama, Hideki Aoyama, Atsushi Matsubara, Hayato Yoshioka and Libo Zhou

Pages:

46-49

Citation:

H. Asano et al., "Rapid Planarization Method by Ultraviolet Light Irradiation for Gallium Nitride Using Platinum Catalyst", Key Engineering Materials, Vols. 523-524, pp. 46-49, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] Shuji Nakamura, Takashi Mukai, and Masayuki Senoh, Appl. Phys. Lett. 64 (1994) 1687.

[2] Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao Yamada et al., Appl. Phys. Lett. 72 (1998) 211.

DOI: https://doi.org/10.1063/1.120688

[3] M. S. Shur, Solid. State. Electron. 42 (12) (1998) 2131-2138.

[4] A. M. Dabiran, A. M. Wowchak, A. Osinsky, J. Xie, B. Hertog, B. Cui, D. C. Look, and P. P. Chow, Appl. Phys. Lett. 93 (2008) 082111.

DOI: https://doi.org/10.1063/1.2970991

[5] Hideo Aida, Hidetoshi Takada, Koji Koyama, Haruji Katakura, Kazuhiko Sunakawa, and Toshiro Doi, J. Electrochem. Soc. 158 (12) (2011) H1206-H1212.

DOI: https://doi.org/10.1149/2.024112jes

[6] Hideyuki Hara, Yasuhisa Sano, Hidekazu Mimura, Kenta Arima, Akihisa Kubota, Keita Yagi, Junji Murata, and Kazuto Yamauchi, J. Electron. Mater. 35 (2006) 8.

DOI: https://doi.org/10.4028/www.scientific.net/msf.556-557.749

[7] J. Murata, A. Kubota, K. Yagi, Y. Sano, H. Hara, K. Arima, T. Okamoto, H. Mimura, and K. Yamauchi, J. Cryst. Growth. 310 (2008) 1637-1641.

DOI: https://doi.org/10.1016/j.jcrysgro.2007.11.093

[8] J. Murata, A. Kubota, K. Yagi, Y. Sano, H. Hara, K. Arima, T. Okamoto, H. Mimura, and K. Yamauchi, Mater. Sci. Forum. 600-603 (2009) 815-818.

DOI: https://doi.org/10.4028/www.scientific.net/msf.600-603.815

[9] M. S. Minsky, M. White, and E. L. Hu, Appl. Phys. Lett. 68 (11) (1996) 11.

[10] J. H. Leach, U. Ozgur, and H. Morkoc, J. Vac. Sci. Technol. B25(6) (2007) 1832.