Ductile Fracture in Metal Forming: A Review of Selected Issues

Abstract:

Article Preview

The paper reviews several theoretical and experimental methods for the assessment of ductile fracture criteria and for their application to the fracture prediction in metal forming processes. In particular, distinguished features of two widely used ductile fracture criteria are demonstrated in the case of free surface fracture. Conventional empirical ductile fracture criteria are not compatible with behaviour of plastic solutions in the vicinity of maximum friction surfaces. An approach to overcome this difficulty is discussed. Finally, a theoretical/experimental method to reveal a possible effect of geometric singularities on the applicability of ductile fracture criteria is reviewed.

Info:

Periodical:

Edited by:

Robert V. Goldstein, Dr. Yeong-Maw Hwang, Yeau Ren Jeng and Cho-Pei Jiang

Pages:

1-11

Citation:

S. Alexandrov and E. Lyamina, "Ductile Fracture in Metal Forming: A Review of Selected Issues", Key Engineering Materials, Vol. 528, pp. 1-11, 2013

Online since:

November 2012

Export:

Price:

$38.00

[1] A.G. Atkins, Fracture in forming, J. Mater. Proc. Technol. 56 (1996) 609-618.

[2] V.L. Kolmogorov, On the history of the deformation of ductile fracture (ductility) of metals, J. Mater. Proc. Technol. 70 (1997) 190-193.

[3] J. Lemaitre, A continuous damage mechanics model for ductile fracture, Trans. ASME J. Eng. Mater. Technol. 107 (1985) 83-89.

DOI: https://doi.org/10.1115/1.3225775

[4] L.M. Kachanov, Introduction to Continuum Damage Mechanics. Kluwer., Dordrecht, (1986).

[5] S. Chandrakanth, P.C. Pandey, A new ductile damage evolution model, Int. J. Fract. 60 (1993) R73-R76.

[6] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part 1 – Yield criteria and flow rules for porous ductile media, Trans. ASME. J. Engng Mater. Technol. 99 (1977) 2-15.

DOI: https://doi.org/10.2172/7351470

[7] B. Druyanov, Technological Mechanics of Porous Bodies, Clarendon Press, New-York, (1993).

[8] G. Dieter, Bulk workability of metals, in: G. Dieter, H. Kuhn, L. Semiatin (Eds. ), Handbook of workability and process design, ASM International, 2003, pp.22-34.

[9] D. Vilotic, M. Plancak, S. Grbic, S. Alexandrov, N. Chikanova, An Approach to determining the workability diagram based on upsetting tests, Fat. Fract. Eng. Mater. Struct. 26 (2003) 305-310.

DOI: https://doi.org/10.1046/j.1460-2695.2003.00469.x

[10] D. Vilotic, M. Planchak, D. Chupkovich, S. Alexandrov, N. Alexandrova, Free surface fracture in three upsetting tests, Exp. Mech. 46 (2006) 115-120.

DOI: https://doi.org/10.1007/s11340-006-5860-7

[11] S. Alexandrov, D. Vilotic Theoretical experimental analysis of fracture initiation at the free surface in upsetting between conical and flat dies, Steel Res. Int. 79 (2008) 375-381.

[12] D. Vilotic, S. Alexandrov, M. Plancak, D. Movrin, A. Ivanisevic, M. Vilotic, Material formability at upsetting by V-shape dies, Steel Res. Int. Special Edition. (2011) 923-928.

[13] M. Oyane, T. Sato, K. Okimoto, S. Shima, Criteria for ductile fracture and their applications, J Mech. Work Technol. 4 (1980) 65-81.

[14] S. Alexandrov, P.T. Wang, R.E. Roadman A fracture criterion of aluminum alloys in hot metal forming, J. Mater. Proc. Technol. 160 (2005) 257-265.

DOI: https://doi.org/10.1016/j.jmatprotec.2004.06.029

[15] S. Alexandrov, D. Vilotic, A theoretical experimental method for the identification of the modified Cockroft - Latham ductile fracture criterion, Proc. IMechE, Part C: J. Mech. Engng Sci. 222 (2008) 1869-1872.

DOI: https://doi.org/10.1243/09544062jmes1055

[16] M.D. Cockroft, D.J. Latham, Ductility and the workability of metals, J. Inst. Metals. 96 (1968) 33-39.

[17] S.I. Oh, C.C. Chen, S. Kobayashi, Ductile fracture in axisymmetric extrusion and drawing. Part 2: Workability in extrusion and drawing, Trans. ASME J. Eng. Ind. 101 (1979) 36-44.

DOI: https://doi.org/10.1115/1.3439471

[18] R. Hambli, M. Reszka, Fracture criteria identification using an inverse technique method and blanking experiment, Int. J. Mech. Sci. 44 (2002) 1349-1361.

DOI: https://doi.org/10.1016/s0020-7403(02)00049-8

[19] N. Ogawa, M. Shiomi, K. Osakada, Forming limit of magnesium alloy at elevated temperatures for forging, Int. J. Mach. Tools & Manufact. 42 (2002) 607-614.

DOI: https://doi.org/10.1016/s0890-6955(01)00149-3

[20] V. Sljapic, P. Hartley, I. Pillinger, Observations on fracture in axi-symmetric and three-dimensional cold upsetting of brass, J. Mater. Proc. Technol. 125-126 (2002) 267-274.

DOI: https://doi.org/10.1016/s0924-0136(02)00397-7

[21] S. Alexandrov, O. Richmond, Singular plastic flow fields near surfaces of maximum friction stress, Int. J. Non-Linear Mech. 36 (2001) 1-11.

DOI: https://doi.org/10.1016/s0020-7462(99)00075-x

[22] S. Alexandrov, E. Lyamina, Singular solutions for plane plastic flow of pressure-dependent materials, Dokl. Phys. 47 (2002) 308-311.

DOI: https://doi.org/10.1134/1.1477887

[23] S. Alexandrov, G. Mishuris, Qualitative behaviour of viscoplastic solutions in the vicinity of maximum-friction surfaces, J. Eng. Math. 65 (2009) 143-156.

DOI: https://doi.org/10.1007/s10665-009-9277-z

[24] M. F. Kanninen, C. H. Popelar, Advanced Fracture Mechanics, University Press, (1985).

[25] D. M. Norris, J. E. Reaugh, B. Moran, D. F. Quinones, A plastic-strain, mean-stress criterion for ductile fracture, Trans. ASME. J. Eng. Mater. Tech. 100 (1978) 279-286.

DOI: https://doi.org/10.1115/1.3443491

[26] S. Alexandrov, E. Lyamina, Prediction of fracture in the vicinity of friction surfaces in metal forming processes, J. Appl. Mech. Techn. Phys. 47 (2006) 757-761.

DOI: https://doi.org/10.1007/s10808-006-0112-2

[27] S. Alexandrov, E. Lyamina, A nonlocal criterion of fracture near a friction surface and its application to analysis of drawing and extrusion processes, J. Mach. Manufact. Reliab. 36 (2007) 262-267.

DOI: https://doi.org/10.3103/s1052618807030090

[28] S.E. Alexandrov, E.A. Lyamina, On constructing the theory of ductile fracture near friction surfaces, J. Appl. Mech. Techn. Phys. 52 (2011) 657-663.

DOI: https://doi.org/10.1134/s0021894411040195

[29] S.E. Aleksandrov, D.Z. Grabko, O.A. Shikimaka, The determination of the thickness of a layer of intensive deformations in the vicinity of the friction surface in metal forming processes, J. Mach. Manufact. Reliab. 38 (2009) 277-282.

DOI: https://doi.org/10.3103/s105261880903011x

[30] S. Alexandrov, The strain rate intensity factor and its applications: A Review, Mater. Sci. Forum. 623 (2009) 1-20.

[31] S. Alexandrov, Y. -R. Jeng, Influence of pressure - dependence of the yield criterion on the strain-rate-intensity factor, J. Eng. Math. 71 (2011) 339-348.

DOI: https://doi.org/10.1007/s10665-011-9458-4

[32] J., Gurland, J. Plateau, The mechanism of ductile rupture of metals containing inclusions, Trans. ASM. 56 (1963) 442-454.

[33] A.S. Argon, J. Im, R. Safoglu, Cavity formation from inclusions in ductile fracture. Metallurg Trans. 6A (1975) 825-837.

DOI: https://doi.org/10.1007/bf02672306

[34] A.S. Kao, H.A. Kuhn, Physical modeling of ductile fracture during metalforming process, J. Eng. Mater. Technol. Trans. ASME. 112 (1990) 302-308.

DOI: https://doi.org/10.1115/1.2903328

[35] V.C. Hoa, D.W. Seo, J.K. Lim, Site of ductile fracture initiation in cold forging: a finite element model. Theor. Appl. Fract. Mech. 44 (2005) 58-69.

DOI: https://doi.org/10.1016/j.tafmec.2005.05.005

[36] A. Behrens, H. Just, Verification of the damage model of effective stresses in cold and warm forging operations by experimental testing and FE simulations, J. Mater. Proc. Technol. 125-126 (2002) 295-301.

DOI: https://doi.org/10.1016/s0924-0136(02)00404-1

[37] S. Alexandrov, D. Vilotic, A study on an effect of geometric singularities on ductile fracture, Eng. Fract. Mech. 76 (2009) 2309-2315.

DOI: https://doi.org/10.1016/j.engfracmech.2009.07.008