Theory of Phase Transformations in the Mechanics of Solids and its Applications for Description of Fracture, Formation of Nanostructures and Thin Semiconductor Films Growth

Abstract:

Article Preview

The brief review of the current state of the theory of first-order phase transitions is given. The basic processes of nucleation and evolution of nanostructure ensembles on crystal surfaces are considered. The general equations describing nanoparticle size distribution, evolution of their average radius and density are deduced. The influence of mechanical pressure on nucleation and property of quantum dots and nanopores is considered. The equations describing new phase nucleation under condition of mechanical pressure caused by distinction in density of an old and new phase are resulted. The kinetic theory of micropore nucleation in solids under loading is described. The kinetic criterion is received of nucleation of micropores and microcracks in fragile solids under the influence of stretching pressure.

Info:

Periodical:

Edited by:

Robert V. Goldstein, Dr. Yeong-Maw Hwang, Yeau Ren Jeng and Cho-Pei Jiang

Pages:

145-164

Citation:

S.A. Kukushkin and A.V. Osipov, "Theory of Phase Transformations in the Mechanics of Solids and its Applications for Description of Fracture, Formation of Nanostructures and Thin Semiconductor Films Growth", Key Engineering Materials, Vol. 528, pp. 145-164, 2013

Online since:

November 2012

Export:

Price:

$38.00

[1] P. Ehrenfest, Commun. Leiden Univ., (1933), Suppl., 576-597.

[2] I.M. Lifshits, M. Ya. Azbel and M.I. Kaganov, Elektronnaya Teoriya Metallov (Electronic Theory of Metals), Nauka, Moscow, (1971).

[3] L.D. Landau, and E.M. Lifshitz, Teoreticheskaya fizika (Theoretical Physics), vol. 5: Statisticheskaya fizika (Statistical Physics), Nauka, Moscow, part 1, 1995, p.606.

[4] The Collected Works of J. Willard Gibbs, Longmans, Green, and Co., New York, (1931).

[5] Volmer, M., Kinetik der Phasenbildung, Steinkopf, Dresden, (1939).

[6] Frenkel, Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Akad. Nauk SSSR, Moscow, (1945).

[7] R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfern, Ann. Phys. 24 (1935) 719-752.

DOI: https://doi.org/10.1002/andp.19354160806

[8] Ya.B. Zel'dovich, On the theory of combustion of powders and explosives, Zh. Eksp. Teor. Fiz. 12 (1942) 498-525.

[9] D. Kashchiev, Nucleation Basic Theory with Applications, Butterworth Heinemann, Oxford (2000).

[10] F.M. Kuni, A.K. Shchekin, and A.P. Grinin, Theory of heterogeneous nucleation for vapor undergoinga gradual metastable state formation, Usp. Fiz. Nauk. 171 (2001) 345–385.

DOI: https://doi.org/10.3367/ufnr.0171.200104a.0345

[11] V.V. Slezov, and J.W. Schmelzer, Kinetics of formation of a phase with an arbitrary, Phys. Rev. E: Stat. Phys. 65 (2002) 031506.

[12] V.P. Skripov, and M.Z. Faizulin, Fazovye perekhody zhidkost'–par i termodinamicheskoe podobie (Liquid–Vapor Transitions and Thermodynamic Similarity), Fizmatlit, Moscow, (2003).

[13] V.A. Shneidman, Transient critical flux in nucleation theory, Phys. Rev. A. 44 (1991), 2609.

[14] S.A. Kukushkin, and A.V. Osipov, New phase formation on solid surfaces and thin film condensation, Prog. Surf. Sci. 151 (1996) 1-107.

[15] S.A. Kukushkin, and A.V. Osipov, Thin film condensation processes, Usp. Fiz. Nauk. 168 (1998) 1083-1116.

[16] S.A. Kukushkin and A.V. Osipov, in Encyclopedia of Nanoscience and Nanotechnology, Nalwa H.S., Ed. American Scientific Publishers, Los Angeles, 2004, p.113.

[17] S.A. Kukushkin, and A.V. Osipov, Thermodynamics and kinetics of switching effects in f erroelectrics, Phys. Rev. B. 65 (2002) 174 101.

[18] A.V. Osipov, Kinetic model of vapour-deposited thin film condensation: nucleation stage, Thin Solid Films. 227 (1993) 111-118.

DOI: https://doi.org/10.1016/0040-6090(93)90027-m

[19] J.D. Eshelby, Progress in solid Mechanics, Elastic inclusions and in homogeneities, Ed. by I.N. Snedolow, V. II., 1961, pp.89-140.

[20] J.W. Christian, The theory of transformations in metals and alloys, Second Edition, Part I, Pergemon Press, (1975).

[21] S.A. Kukushkin, I. Yu. Tentilova, I.P. Pronin, Mechanism of the Phase Transformation of the Pyrochlore Phase into the Perovskite Phase in Lead Zirconate Titanate Films on Silicon Substrates, Phys. Solid State. 54 (2012), т. 54, 571-576.

DOI: https://doi.org/10.1134/s1063783412030158

[22] A.V. Osipov, F. Schmitt, S.A. Kukushkin and P. Hess, Kinetic model of coherent island formation in the case of self-limiting growth, Phys. Rev. B: Solid State. 64 (2001) 205421.

DOI: https://doi.org/10.1103/physrevb.64.205421

[23] S.A. Kukushkin, A.V. Osipov, F. Schmitt and P. Hess, The nucleation of coherent semiconductor islands during the Stanski-Krastanov growth induced by elastic strain, Semiconductors. 36 (2002) 1097-1105.

DOI: https://doi.org/10.1134/1.1513851

[24] S.A. Kukushkin, Nucleation of pores in brittle solids under load, J. Appl. Phys. 98 (2005) 033503-1.

[25] S.A. Kukushkin, A.V. Osipov and M.G. Shlyagin, Formation of Pores in the Optical Fiber Exposed to Intense Pulsed UV Radiation, Tech. Phys. 31 (2006) 1035-1045.

DOI: https://doi.org/10.1134/s1063784206080135

[26] S.A. Kukushkin, M.G. Shlyagin, P.L. Swart and, A.A. Chtcherbakov, A.V. Osipov, Type IIA photosensitivity and formation of pores in optical fibers under intense ultraviolet irradiation, J. Appl. Phys. 102 (2007) 053502.

DOI: https://doi.org/10.1063/1.2773996

[27] D.J. Eaglesham and M. Cerullo, Dislocation-free Stranski-Krastanow growth of Ge on Si(100), Phys. Rev. Lett. 64 (1990) 1943-(1946).

DOI: https://doi.org/10.1103/physrevlett.64.1943

[28] V.A. Schukin, D. Bimberg, Epitaxy of Nanostructures, Rev. Mod. Phys. 71 (1999) 1125-1171.

[29] V.A. Shchukin, N.N. Ledentsov, P.S. Kop'ev and D. Bimberg, Spontaneous ordering of arrays of coherent strained islands, Phys. Rev. Lett. 75 (1995) 2968-2971.

DOI: https://doi.org/10.1103/physrevlett.75.2968

[30] O.P. Pchelyakov, Yu.B. Bolkhovityanov, A.V. Dvurechenskii, A.I. Nikiforov, A.I. Yakimov, and B. Voigtlander, Molecular beam epitaxy of silicon-germanium nanostructures, Thin Solid Films. 367 (2000) 75-84.

DOI: https://doi.org/10.1016/s0040-6090(00)00667-2

[31] Zh. I. Alferov, The history and future of semiconductor heterostructures, Semiconductors. 32 (1998) 1-14.

[32] Yu. B. Bolkhovityanov, O.P. Pchelyakov and S.I. Chikichev, Phase Diagrams of the Elements at High Pressure, Usp. Fiz. Nauk. 171 (2001) 689.

[33] V.G. Dubrovskii, G.E. Cirlin and V.N. Ustinov, Kinetics of the initial stage of coherent island formation in heteroepitaxial systems, Phys. Rev. B: Solid State. 68 (2003) 075409.

DOI: https://doi.org/10.1103/physrevb.68.075409

[34] R.V. Gol'dshtein, V.A. Gorodtsov, P.S. Shushpannikov, Experimental and theoretical investigation of formation of the oxygen-containing precipitate-dislocation loop system in silicon, Mechanics of Solids. 3 (2010) 7-21.

[35] T. Cramer, A. Wanner, P. Gumbsch, Energy Dissipation and Path Instabilities in Dynamic Fracture of Silicon Single Crystals, Phys. Rev. Lett. 85 4 (2000) 788-791.

DOI: https://doi.org/10.1103/physrevlett.85.788

[36] G.L. Barenblatt, R.V. Goldstein, Int. J. Fract. Mech. 8 4 (1972) 427.

[37] N. Morozov, Y Petrov, Dynamics of Fracture, Springer-Verlag, Berlin Heidelberg New York, (2000).

[38] L. B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, New York, (1990).

[39] T. Yokobori, The Theory of Fatigue Fracture of Metals, J. Chem. Phys., 22 (1954) 951.

[40] J.M. Schwarz and D.S. Fisher, Depinning with dynamic stress overshoots: mean field theory, Phys. Rev. Lett. 87 (2001) 6107-6110.

DOI: https://doi.org/10.1103/physrevlett.87.096107

[41] A. Karma, D.A. Kessler, and H. Levine, Phase-field model of mode III dynamic fracture, Phys. Rev. Lett. 87 (2001) 045501.

DOI: https://doi.org/10.1103/physrevlett.87.045501

[42] E.A. Brener, V.I. Marchenko, H. MÄuller-Krumbhaar and R. Spartschek, Coarsening kinetics with elastics effects, Phys. Rev. Lett. 84 (2000) 4914-4917.

DOI: https://doi.org/10.1103/physrevlett.84.4914

[43] P. Walsh, R.K. Kalia, A. Nakano, and P. Vashishta, Amorphization and anisotropic fracture dynamics, Appl. Phys. Lett. 77 (2000) 4332-4334.

DOI: https://doi.org/10.1063/1.1328371

[44] G.S. Smith, E.B. Tadmor, and E. Kexires, Multiscaile simulation of loading and electrical bresistance in silicon nanoindentation, Phys. Rev. Lett. 84 (2000) 1260.

[45] J.S. Kallman, W.G. Hoover, C.G. Hoover, A.J. de Groot, S.M. Lee, and F. Wooten, MolecularDynamics of Silicon Indentation, Phys. Rev. B. 47 (1993) 7705.

DOI: https://doi.org/10.1103/physrevb.47.7705

[46] S.H. Groods, L.M. Brown, The nucleation of cavities by plastic deformation, Acta Met. 27 (1979) 1-15.

[47] R.G. Fleek, D.M. Taplin and R. Beevers, An investigation of the nucleation of creep cavities by 1 MV electron microscopy, Acta Met. 23 (1975) 415-424.

DOI: https://doi.org/10.1016/0001-6160(75)90081-4

[48] T.J. Chung, K.I. Kadawa and J.R. Rice, et al., Non-equilibrium models for diffusive cavitation of grain interfaces, Acta Met. 27 (1979) 265-284.

[49] P.G. Cheremskoi, V.V. Slyozov, V.I. Betekhtin, Pores in the Solid State, Energoatomizdat (in Russia), M, (1990).

[50] A.A. Griffiths, The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc., ser. A. 221 (1920) 163-198.

[51] A.N. Orlov, V.A. Petrov and V.I. Vladimirov, A kinetic approach to fracture of solids, Phys. Status Solidi A. 42 (1970) 197-206.

DOI: https://doi.org/10.1002/pssb.19700420121

[52] E.A. Brener and R. Spatschek, Fast crack propagation by surface diffusion, Phys. Rev. E. 67 (2003) 016112.

[53] A.A. Vakulenko and S.A. Kukushkin, Phase transition kinetics in loaded solids, Phys. Solid State. 42 (2000) 179-183.

DOI: https://doi.org/10.1134/1.1131189