A Correlation between the Magnetic Behaviour and Damage of Metal Materials under Plastic Deformations

Abstract:

Article Preview

The effect of plastic tensile deformation on changes in density and magnetic behaviour has been studied on low-carbon steel specimens under hydrostatic pressure of 0.1 to 500 MPa in a test chamber. It has been shown that the parameters of minor magnetic hysteresis loops can be used to estimate the amount of plastic strain and the strain-related structural damage of metal.

Info:

Periodical:

Edited by:

Robert V. Goldstein, Dr. Yeong-Maw Hwang, Yeau Ren Jeng and Cho-Pei Jiang

Pages:

71-78

Citation:

E.S. Gorkunov, "A Correlation between the Magnetic Behaviour and Damage of Metal Materials under Plastic Deformations", Key Engineering Materials, Vol. 528, pp. 71-78, 2013

Online since:

November 2012

Authors:

Export:

Price:

$38.00

[1] V.I. Betekhtin, V.I. Vladimirov, A.G. Kodomtsev et al, Plastic deformation and fracture of solids, Problemy prochnosti, No 7 (1979) 38-45.

[2] J.R. Low, Brittle fracture as related to microstructure, In: The Structure of Metals and Properties, M., National Science and Technology Publisher for Literature on Ferrous and Non-Ferrous Metallurgy, 1957, pp.170-189.

[3] B.I. Beresnev, E.D. Martynov, K.P. Rodionov et al, Plasticity and strength of solids under high pressure, M., Nauka, (1970).

[4] E.S. Gorkunov, Yu.N. Dragoshansky, S.S. Rodionova, The effect of the structure of steels on reversal magnetization in weak and strong magnetic fields and solution of problems on magnetic structuroscopy of items made of these steels, Defektoskopia (Russian Journal of Nondestructive Testing). No 6 (1998).

[5] R. Bozort, Ferromagnetism, M., Inostrannaya Literatura, (1956).

[6] E.S. Gorkunov, Yu.N. Dragoshansky, M. Mihovski, The Barkhausen effect as applied to the structuroscopy of ferromagnetic materials (survey II), 2. The effect of elastic and plastic deformation, Defektoskopia (Russian Journal of Nondestructive Testing), No 7 (1999).

[7] E.S. Gorkunov, Yu.N. Dragoshansky, V.A. Khamitov, Magnetoelastic acoustic emission in ferromagnetic materials, 2. The effect of elastic and plastic deformations on the parameters of magnetoelastic acoustic emission, Defektoskopia (Russian Journal of Nondestructive Testing), No 12 (2001).

[8] V.F. Shishmintsev, A.A. Rodaikin, A.A. Bogatov, O. I Mizhiritsky, A unit for testing metals under hydrostatic pressure, Zavodskaya laboratoria, 44 No 10 (1978) 1270-1280.

[9] V.L. Kolmogorov, Mechanics of metal forming, M., Metallurgia, (1986).

[10] A.V. Shalimova, A hydrostatic method for density determination, Zavodskaya laboratoria, No 5 (1967) 55.

[11] T. Yokobory, The physical nature of plastic metal deformation, M, Metallurgia, (1971).

[12] E.I. Kondorsky, On the theory of the coercive force of steels, DAN SSSR, 63 1948, No 5, pp.507-510.

[13] E.I. Kondorsky, On the nature of the coercive force and irreversible changes on magnetization, JETF, 1937, No 7, pp.1117-1131.

[14] L. Neel, The effect of voids and inclusions on the coercive force, In: Physics of ferromagnetic regions, М., ILI, 1951, pp.215-239.

[15] S. V. Vonsovsky, Ya. S. Shur, Ferromagnetism, M. - L., The National Publishing House for Technological and Theoretical Literature, (1948).

[16] M. Kersten, Uber die Bedeutung der Versetzungsdichte fur die Theorie der Koerzitivkraft rekristallisierter Werkstoffe, Zs. Angtw. Phys. Bd. 8 No 10 (1956) 496-502.

[17] F. Vicena, On the effect of dislocations on the coercive force of ferromagnetics, Czechosl. J. Phys. 5 No 4 (1955) 480-501.

[18] Z. Malek, A study of the influence of dislocation on some of the magnetic properties of permalloy alloys, Czechosl. J. Phys. 9 No 5 (1959) 613-627.

[19] H. Trauble, Modern der Metallphysik, Berlin etc., Springer. 1966, Pt. 2, pp.157-475.

[20] M.N. Mikheev, E. S Gorkunov, Magnetic methods of structural analysis and nondestructive testing, M., Nauka, (1993).

[21] V.P. Makarov, B.V. Molotilov, A.S. Moskvin, et al, The effect of external stresses on the domain structure around inclusions in the crystals of the Fe - 3% Si alloy, Izv. AN SSSR, ser. fiz., 39 No 7 (1975) 1410 - 1414.

[22] V.M. Ryrvin, B.V. Molotilov, V.P. Makarov, Magnetization around inclusions in crystals of Fe - 3% Si, Izv. AN SSSR, ser. fiz., No 7 (1975) 39.

[23] B.V. Molotilov, L.B. Kazajan, On the sources of phase hardening in transformer steel. Precision alloys, Transactions of the Central Ferrous Metallurgy Research Institute, No 51 (1967) 227-232.

[24] G. Trueble, A. Seger, The effect of crystal lattice defects on magnetization in ferromagnetic monocrystals, Plastic deformation of monocrystals, М., Mir, 1996, pp.201-264.

[25] C.C.H. Lo, F. Tang, S.B. Biner, D.C. Jiles, Effects of fatigue-induced changes in microstructure and stress on domain structure and magnetic properties of Fe-C alloys, Journal of Applied Physics. 87 (2000) 6520-6522.

DOI: https://doi.org/10.1063/1.372757

[26] E. Schwabe, Theoretische Betrachtungen uber die Beeinflussung der ferromagnetischen Koerzitivkraft durch Einschlusse mit rotationselliptischer Form, fur den Fall, Ann. Phys. 11 No 6 (1952) 99-112.

DOI: https://doi.org/10.1002/andp.19524460203

[27] W. Precht, Koerzitivfeldstarke bei discusformiger Ausscheidung im a- Eisen, Zs. Angtw. Phys. 21 No 1 (1966) 54-58.

[28] S.M. Thompson, B.K. Tanner, The magnetic properties of pearlitic steels as a function of carbon content, J. Magn. Magn. Mater. 123 (1993) 283-298.

[29] A.A. Bogatov, O.I. Mizhiritsky, S.V. Smirnov, Reserved plasticity of metals in forming, M., Metallurgia, (1984).