Murine Macrophage RAW264.7 Cells Response for the Carbon Nanotubes Immobilized on Substrate

Abstract:

Article Preview

The reports on cytotoxic studies of carbon nanotubes (CNTs) increased exponentially. In the present study, we investigate murine macrophage RAW264.7 cell response for the CNTs immobilized on a polystyrene substrate. We prepared CNT-coated dishes, and estimate the interaction of RAW264.7 cells with CNTs by cell adhesion, proliferation assay, and measurement of TNF-α production. As a result, the highest cell adhesion and proliferation was observed on a commercially cell culture polystyrene dish, while CNT-coated dish indicate slightly lower activity of them. Moreover, amount of production of TNF-α on the CNT-coated dishes was considerable lower than that in the case of lipopolysaccharide (LPS) addition as a control. These results indicated that CNT-coated dishes could not show strong cytotoxicity for RAW264.7 cells in vitro.

Info:

Periodical:

Key Engineering Materials (Volumes 529-530)

Main Theme:

Edited by:

Kunio Ishikawa and Yukihide Iwamoto

Pages:

379-384

Citation:

T. Akasaka et al., "Murine Macrophage RAW264.7 Cells Response for the Carbon Nanotubes Immobilized on Substrate", Key Engineering Materials, Vols. 529-530, pp. 379-384, 2013

Online since:

November 2012

Export:

Price:

$38.00

[1] M.P. Mattson, R.C. Haddon, A.M. Rao, Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth, J. Mol. Neurosci. 14 (2000) 175-182.

DOI: https://doi.org/10.1385/jmn:14:3:175

[2] T. Akasaka, A. Yokoyama, M. Matsuoka, T. Hashimoto, F. Watari, Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations, Mater. Sci. Eng. C, 30 (2010) 391-399.

DOI: https://doi.org/10.1016/j.msec.2009.12.006

[3] T. Akasaka, A. Yokoyama, M. Matsuoka, T. Hashimoto, F. Watari, Maintenance of hemiround colonies and undifferentiated state of mouse induced pluripotent stem cells on carbon nanotube-coated dishes, Carbon, 49 (2011) 2287-2299.

DOI: https://doi.org/10.1016/j.carbon.2011.01.061

[4] S. Hirano, S. Kanno, A. Furuyama, Multi-walled carbon nanotubes injure the plasma membrane of macrophages, Toxicol. Appl. Pharmacol. 232 (2008) 244-251.

DOI: https://doi.org/10.1016/j.taap.2008.06.016

[5] C. Bo, L. Ying, S.W. Ming, H. Yasuhiko, D.X. Cheng, L.W. Hua, In vitro evaluation of cytotoxicity and oxidative stress induced by multiwalled carbon nanotubes in murine RAW 264. 7 macrophages and human A549 lung cells, Biomed. Environ. Sci. 24 (2011).

[6] M.L.D. Giorgio, S.D. Bucchianico, A.M. Ragnelli, P. Aimola, S. Santucci, A. Poma, Effects of single and multi walled carbon nanotubes on macrophages: Cyto and genotoxicity and electron microscopy, Mutat. Res. 722 (2011) 20–31.

DOI: https://doi.org/10.1016/j.mrgentox.2011.02.008

[7] V.E. Kagan, Y.Y. Tyurina, V.A. Tyurin, N.V. Konduru, A.I. Potapovich, A.N. Osipov, E.R. Kisin, D. Schwegler-Berry, R. Mercer, V. Castranova, A.A. Shvedova, Direct and indirect effects of single walled carbon nanotubes on RAW 264. 7 macrophages: Role of iron, Toxicol. Lett. 165 (2006).

DOI: https://doi.org/10.1016/j.toxlet.2006.02.001

[8] T. Zhang, M. Tang, L. Kong, H. Li, T. Zhang, S. Zhang, Y. Xue, Y. Pu, Comparison of cytotoxic and inflammatory responses of pristine and functionalized multi-walled carbon nanotubes in RAW 264. 7 mouse macrophages, J. Hazard. Mater. 219-220 (2012).

DOI: https://doi.org/10.1016/j.jhazmat.2012.03.079

[9] X. Zhao, S. Inoue, M. Jinno, T. Suzuki, Y. Ando, Macroscopic oriented web of single-walled carbon nanotubes, Chem. Phys. Lett. 373 (2003) 266-271.

DOI: https://doi.org/10.1016/s0009-2614(03)00610-9

[10] Y. Sato, A. Yokoyama, K. Shibata, Y. Akimoto, S. Ogino, Y. Nodasaka, T. Kohgo, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, M. Ishiguro, R. Hatakeyama, F. Watari, K. Tohji, Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo, Mol. Biosyst. 1 (2005).

DOI: https://doi.org/10.1039/b502429c

[11] S. Chen, J.A. Jones, Y. Xu, H. -Y. Low, J.M. Anderson, K.W. Leong, Characterization of topographical effects on macrophage behavior in a foreign body response model, Biomaterials, 31 (2010) 3479-3491.

DOI: https://doi.org/10.1016/j.biomaterials.2010.01.074

[12] T. Akasaka, A. Yokoyama, M. Matsuoka, T. Hashimoto, S. Abe, M. Uo, F. Watari, Adhesion of human osteoblast-like cells (Saos-2) to carbon nanotubes sheets, Bio-med. Mater. Eng. 19 (2009) 147-153.

[13] P.B. van Wachem, T. Beugeling, J. Feijen, A. Bantjes, J.P. Detmers, W.G. van Aken, Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities, Biomaterials 6 (1985), 403-408.

DOI: https://doi.org/10.1016/0142-9612(85)90101-2