Samarium Ions Doped Yttrium Aluminium Garnet Glass Ceramics


Article Preview

Sm3+ doped YAG glass ceramics containing single phase of YAG micro-crystals have been obtained by heat-treating the aluminosilicate precursor glasses. The YAG crystals grow with several preferred orientations and a dominant one (444) in the matrix, and present microcrystal sizes in the range of 3~15µm. The pilotaxitic texture existed in internal network of the YAG glass ceramics can increase yield strength and tensile strength of the sample effectively. Typical visible transition emissions of Sm3+ have been observed in the YAG glass ceramics under the excitation of short-wavelength visible light, and the spectral intensity ratio between the electric dipole 4G5/26H9/2 and the magnetic dipole 4G5/26H5/2 transitions is lower than the values reported in the optical glasses specifying the enhanced symmetric nature in the Sm3+ doped YAG glass ceramics. The obvious Stark splitting exhibited in emission spectrum manifests that rare-earth ions have been incorporated into YAG lattices.



Key Engineering Materials (Volumes 531-532)

Edited by:

Chunliang Zhang and Liangchi Zhang




J. Yang et al., "Samarium Ions Doped Yttrium Aluminium Garnet Glass Ceramics", Key Engineering Materials, Vols. 531-532, pp. 216-219, 2013

Online since:

December 2012




[1] S.L. Zhao, F.X. Xin, S.Q. Xu, D.G. Deng, L.H. Huang, H.P. Wang and Y.J. Hua: J. Non-Cryst. Solids Vol. 357 (2011), p.2424.

[2] F. Song, C.G. Ming, L.Q. An, Q.R. Wang, Y. Yu, T.Q. Sun and J.G. Tian: Mater. Lett. Vol. 65 (2011), p.3140.

[3] F.Y. Weng, D.Q. Chen, Y.S. Wang, Y.L. Yu, P. Huang and H. Lin: Ceram. Int. Vol. 35 (2009), p.2619.

[4] S.Q. Man, E.Y.B. Pun and P.S. Chung: J. Opt. Soc. Am. B Vol. 17 (2000), p.23.

[5] J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma and J. Qiu: Phys. Chem. Chem. Phys. Vol. 12 (2010), p.13759.

[6] J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu and Y. Pan: Ceram. Int. Vol. 36 (2010), p.193.

[7] X. Liang, Y. Yang, C. Zhu, S. Yuan and G. Chen: Appl. Phys. Lett. Vol. 91 (2007), p.0911041.

[8] R.V. Mangalaraja, S. Ananthakumar, M. Paulraj, H. Pesenti, M. Lopez, C.P. Camurri, L.A. Barcos and R.E. Avila, J. Alloys Compd. Vol. 510 (2012), p.134.


[9] R. Praveena, V. Venkatramu, P. Babu and C.K. Jayasankar: Physica B Vol. 403 (2008), p.3527.

[10] H. Yang and Y. Kim: J. Lumin. Vol. 128 (2008) p.1570.

[11] P.L. Li, Z.J. Wang, Z.P. Yang, Q.L. Guo and X. Li: Mater. Lett. Vol. 63 (2009), p.751.

[12] L.F. Shen, X. Liu, B.J. Chen, E.Y.B. Pun, H. Lin, J. Phys. D: Appl. Phys. 45 (2012), p.115301.

[13] J. Zhang, D.L. Yang, E.Y.B. Pun, H. Gong and H. Lin: J. Appl. Phys. Vol. 107 (2010), p.123111.

[14] G. Lakshminarayana, H.C. Yang, Y. Teng and J.R. Qiu: J. Lumin. Vol. 129 (2009), p.59.

[15] Z.J. Wang, P.L. Li, Z.P. Wang and Q.L. Guo: J. Lumin. Vol. 132 (2012), p. (1944).

[16] A.M. Babu, B.C. Jamalaiah, T. Sasikala, S.A. Saleem and L.R. Moorthy: J. Alloys Compd. Vol. 509 (2011), p.4743.