Luminescent Properties of Eu3+-Doped BaGd2ZnO5 Phosphors for White LED


Article Preview

BaGd2ZnO5:Eu3+ phosphors were synthesized at sintering temperatures of 800, 900, 1000, 1100 and 1200 °C by high-energy ball milling method. The crystallinity, surface morphology and photoluminescence properties of phosphors were investigated by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and luminescence spectrophotometry, respectively. The XRD results indicate that the crystallinity of the powder was improved and the powder shows a orthorhombic structure as the sintering temperature increased. The emission spectra of BaGd2ZnO5 phosphors excited at 280 nm exhibit a series of shaped peaks assigned to the 5D07FJ (J=0, 1, 2, 3) transitions, and luminescence intensity was increased with increasing sintering temperature. The FE-SEM images indicate that the size and shape of particles are regular.



Key Engineering Materials (Volumes 531-532)

Edited by:

Chunliang Zhang and Liangchi Zhang




H. M. Noh et al., "Luminescent Properties of Eu3+-Doped BaGd2ZnO5 Phosphors for White LED", Key Engineering Materials, Vols. 531-532, pp. 22-26, 2013

Online since:

December 2012




[1] Y. Hu, W. Zhuang, H. Ye, D. Wang, S. Zhang and X. Huang J. Alloys Compd. 390 226 (2005).

[2] Z. L. Wang, H. B. Liang, L. Y. Zhou, H. Wu, M. L. Gong and Q. Su, Chem. Phys. Lett. 412 313 (2005).

[3] S. Yan, J. Zhang, X. Zhang, S. Lu, X. Ren, Z. Nie and X. Wang, J. Phys. Chem. C 111 13256 (2007).

[4] J. G. Wang, X. P. Jing, C. H. Yan and J. H. Lin, J. Electrochem. Soc. 152 G186 (2005).

[5] A. Xie, X. M. Yuan, J. J. Wang and F. Wang, Sci. China Ser. E-Technol. Sci. 52 1913 (2009).

[6] H. S. Jang and D. Y. Jeon, Appl. Phys. Lett. 90 041906 (2007).

[7] J. U. Kim, Y. S. Kim and H. Yang, Meter. Lett. 63 614 (2009).

[8] J. S. Kim, P. E. Jeon, J. C. Choi and H. L. Park, Solid State Commun. 133 187 (2005).

[9] K. Toda, Y. Kawakami, S. I. Kousaka, Y. Ito, A. Komeno. K. Uematsu and M. Sato, IEICE Trans. Electron. E89-C 1406 (2006).

[10] Y. C. Liao, C. H. Lin and S. L. Wang, J. Am. Chem. Soc. 127 9986 (2005).

[11] X. Liu, C. Lin and J. Lin, Appl. Phys. Lett. 90 081904 (2007).

[12] Y. C. Liao, C. H. Lin and S. L. Wang, J. Am. Chem. Soc. 127 9986 (2005).

[13] T. Hayakawa, A. Hiramitsu and M. Nogami, Appl. Phys. Lett. 82 2975 (2003).

[14] C. Feldmann, T. Justel, C. R. Ronda and P. J. Schmidt, Adv. Funct. Mater. 13 511 (2003).

[15] B. N. Mahalley, R. B. Pode and P. K. Gupra, Phys. Status Solidi A 177 293 (1999).

[16] H. K. Yang and J. H. Jeong, J. Phys. Chem. C 114 226 (2010).

[17] J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim and K. S. Suh, Appl. Phys. Lett. 77 2162 (2000).

[18] S. H. Byeon, K. G. Ko, J. C. Park and D. K. Kim, Chem. Mater. 14 603 (2002).

[19] C. Guo, X. Ding and Y. Xu, J. Am. Ceram. Soc. 93 1709 (2010).

[20] Y. C. Kang, S. B. Park, I. W. Lenggoro and K. Okuyama, J. Phys. Chem. Solids 60 380 (1999).

[21] Q. Su, H. B. Liang, Y. Tao and S. B. Wang, J. Chin. Rare Earth Soc. 19 481 (2001).