New Usage for Cyclotrimerization Reaction: A Facile Synthesis of 1,3,5-Triazine Derivatives

Abstract:

Article Preview

Series of star-shaped molecules based on 1,3,5-triazine core have been synthesized via CF3SO3H-mediated cyclotrimerization reaction, and then characterized by 1H-NMR, 13C-NMR, MALDI-TOF-MS, and elemental analysis. The effects of different factors, such as the steric hindrance and electronegativity on the reaction efficiency, are systematically studied. The results indicate that the steric hindrance plays an important role in the reaction, while electronegativity has little impact on this reaction. In addition, the bridges including ethylene group and carbon atom between 1,3,5-triazine core and peripherals are firstly studied in this work, which expands the application of CF3SO3H-mediated cyclotrimerization reaction. Moreover, we have successfully broadened the cyclotrimerization reaction to the preparation of 1,3,5-triazine derivatives with different substituents as the peripheral, which is promising for preparation of single-layer multi-functional optoelectronic materials.

Info:

Periodical:

Key Engineering Materials (Volumes 531-532)

Edited by:

Chunliang Zhang and Liangchi Zhang

Pages:

32-35

Citation:

M. Ouyang et al., "New Usage for Cyclotrimerization Reaction: A Facile Synthesis of 1,3,5-Triazine Derivatives", Key Engineering Materials, Vols. 531-532, pp. 32-35, 2013

Online since:

December 2012

Export:

Price:

$38.00

[1] C.W. Tang, and S.A. Van Slyke: Appl. Phys. Lett. Vol. 51(1987), p.913.

[2] Y.J. Zhang, Y.X. Jin, R. Bai, Z.W. Yu, B. Hu, M. Ouyang, J.W. Sun, C.H. Yu, J.L. Liu, and C. Zhang: J. Photochem. Photobiol. A Vol. 227(2012), p.59.

[3] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. MacKay, R.H. Friend, P.L. Burn, and A.B. Holmes: Nature Vol. 347(1990), p.539.

[4] M.T. Bernius, M. Inbasekaran, J. O'Brien, and W. Wu: Adv. Mater. Vol. 14(2002), p.1737.

[5] C. Zhang, Y.J. Zhang, W.Q. Xiang, B. Hu, M. Ouyang, Y. Xu, and C.A. Ma: Chem. Lett. Vol. 39(2010), p.520.

[6] H.L. Zhong, E.J. Xu, D.L. Zeng, J.P. Du, J. Sun, S.J. Ren, B. Jiang, and Q. Fang: Org. Lett. Vol. 10(2008), p.709.

[7] S.J. Ren, Q. Fang, F. Yu, and D.S. Bu, J. Polym. Sci. Part A: Polym. Chem. Vol. 43(2005), p.6554.

[8] R. Fink, C. Frenz, M. Thelakkat, and H. Schmidt: Macromolecules vol. 30(1997), p.8177.

[9] J.W. Kang, D.S. Lee, H.D. Park, Y.S. Park, J.W. Kim, W.I. Jeong, K.M. Yoo, K. Go, S.H. Kim, and J.J. Kim: J. Mater. Chem. Vol. 17(2007), p.3714.

[10] H.X. Zhang, S. Gao, and X.X. Yang: Mol. Biol. Rep. Vol. 36(2009), p.1405.

[11] S. Hayami, and K. Inoue: Chem. Lett. Vol. 7(1999), p.545.

[12] H.F. Chen, S.J. Yang, Z.H. Tsai, W.Y. Hung, T.C. Wang, and K.T. Wong: J. Mater. Chem. Vol. 19(2009), p.8112.

[13] H. Lee, D. Kim, H.K. Lee, W. Qiu, N.K. Oh, W.C. Zin, and K. Kim: Tetrahedron Lett. Vol. 45(2004), p.1019.

[14] V.A. Soloshonok, and D.J. Nelson: Beilstein J. Org. Chem. Vol. 7(2011), p.744.