Molecular Dynamics Simulation of Microcrack Healing in Copper Nano-Plate

Abstract:

Article Preview

The molecular dynamics method is used to simulate microcrack healing in copper nano-plate during heating. During microcrack healing, the tip of microcrack is blunted and deforms to round shape, the microcrack becomes smaller and smaller until it is healed through slip bands emitting from the pre-crack tip and expanding to the top and bottom of the copper nano-plate. The healing time is different in different temperature. The healing processes in different temperature present different slip bands for crack healing. When temperature is below 650K, the healing time decreases dramatically with temperature increase. When temperature is above 650K, the healing time decreases smoothly with temperature increase. The critical temperature of microcrack healing in copper nano-plate without pre-existing dislocations is about 400K.

Info:

Periodical:

Key Engineering Materials (Volumes 531-532)

Edited by:

Chunliang Zhang and Liangchi Zhang

Pages:

454-457

Citation:

M. F. Wang et al., "Molecular Dynamics Simulation of Microcrack Healing in Copper Nano-Plate", Key Engineering Materials, Vols. 531-532, pp. 454-457, 2013

Online since:

December 2012

Export:

Price:

$41.00

[1] B.D. Foster, J.B. Patton, Am. Ceram. Soc. (Adv. Ceram)14(1985).

[2] S.K. Lee, W. Ishida, S.Y. Lee, K.W. Nam, K. Ando, J. Eur. Ceram. Soc. 25(2005)3495.

[3] T. Osada,W. Nakao, K. Takahashi, K. ando,S. Saito, J. Eur. Ceram. Soc. 27(2007)3261.

[4] Houjou K, Ando K, Liu SP, Sato S. Leur Ceram Soc 2004; 24; 2329-38.

[5] K.W. Gao, L.J. Qial, Y.B. Wang, W.Y. Chu, Comput. Mater. Sci. 20 (2001) 143.

[6] S. Li,K.W. Gao, L.J. Qiao, F.X. Zhou, W.Y. Chu, Comput. Mater. Sci. 20(2001)143.

[7] G.H. Zhou, K.W. Gao, L. j. Qiao, Y.B. Wang, W.Y. Chu, Model. Simul. Mater. Sci. Eng. 8(2000)603.

[8] D.B. Wei, J.T. Han, A. Kiet Tieu, Z.Y. Jiang, Scripta Mater 51(2004)583-587.

[9] M. Li, W.Y. Chu, K.W. Gao, L.J. Qiao, Material Letters 58(2004)543-546.

[10] T. Nozaki, M. Doyama, Y. Kogure, Mater. Sci. Eng. A350(2003)233. DOI: 10. 1016/S0921-5093 (02)00703-7.

[11] D. Beeman. J Comput Phys. 1976, 20(13): 130~139.

[12] Yizhou Zhou, Benlian Zhou, Xiaonan Guo, Guanhu He, Futian Zhang, Chinese Journal of Materials Research, 2000, 14(1): 29-36.