Abnormal Capacitance Hysteresis Phenomena in Stacked Nanocrystalline-Si Based Metal Insulator Semiconductor Memory Structure


Article Preview

Stack nanocrystalline-Si (nc-Si) based metal insulator semiconductor memory structure was fabricated by plasma enhanced chemical vapor deposition. The doubly stacked layers of nc-Si with the thickness of about 5 nm were fabricated by the layer-by-layer deposition technique with silane and hydrogen mixture gas. Capacitance-Voltage (C-V) measurements were used to investigate electron tunnel and storage characteristic. Abnormal capacitance hysteresis phenomena are obtained. The C-V results show that the flatband voltage increases at first, then decreases and finally increases, exhibiting a clear deep at gate voltage of 9 V. The charge transfer effect model was put forward to explain the electron storage and discharging mechanism of the stacked nc-Si based memory structure. The decreasing of flatband voltage at moderate programming bias is attributed to the transfer of electrons from the lower nc-Si layer to the upper nc-Si layer.



Key Engineering Materials (Volumes 531-532)

Edited by:

Chunliang Zhang and Liangchi Zhang




X. Wang et al., "Abnormal Capacitance Hysteresis Phenomena in Stacked Nanocrystalline-Si Based Metal Insulator Semiconductor Memory Structure", Key Engineering Materials, Vols. 531-532, pp. 547-550, 2013

Online since:

December 2012




[1] S. Tiwari, F. Rama, H. Hanafi, A. Hartstein, E.F. Crabbe and K. Chan: Appl. Phys. Lett. Vol. 68 (1996), p.1377.

[2] Z.G. Li, S.B. Long, M. Liu, C. S. Wang, R. Jia, J. Lv and Y. Shi: Chin. Phys. B Vol. 16(3) (2007), p.795.

[3] S.Y. Huang and S. Oda: Appl. Phys. Lett. Vol. 87 (2005), p.173107.

[4] M. Dai, K. Chen, X.F. Huang, L.C. Wu and K.J. Chen: J. Appl. Phys. Vol. 95 (2004), p.640.

[5] Y. Shi, K. Saito, H. Ishikuro and T. Hiramoto: J. Appl. Phys. Vol. 84 (1998), p.2358.

[6] T.C. Chang, S.T. Yan, P.T. Liu, H.H. Wu and S.M. Sze: Appl. Phys. Lett. Vol. 85 (2004), p.248.

[7] T.Z. Lu, M. Alexe, R. Scholz, V. Talelaev and M. Zacharias: Appl. Phys. Lett. Vol. 87 (2005), p.202110.

DOI: https://doi.org/10.1063/1.2132083

[8] T.Z. Lu, M. Alexe, R. Scholz, V. Talelaev, R.J. Zhang and M. Zacharias: J. Appl. Phys. Vol. 100 (2006), p.014310.

[9] L.C. Wu, K.J. Chen, J.M. Wang, X.F. Huang, Z.T. Song and W.L. Liu: Appl. Phys. Lett. Vol. 89 (2009), p.112118.

[10] J. Wang, L. Wu, K. Chen, L. Yu, X. Wang, J. Song and X. Huang: J. Appl. Phys. Vol. 101 (2007), p.014325.

[11] L.C. Wu, M. Dai, X.F. Huang, W. Li and K.J. Chen: J. Vac. Sci. Technol. B Vol. 22 (2004), p.678.