The Specific Binding between Galactose Group and Ricinus Communis Agglutinin (RCA) Investigated with Microcantilever


Article Preview

The specific recognization between galactose group and Ricinus Communis Agglutinin (RCA) was investigated by microcantilever. The gold side of the microcantilever was covalently bound with N-galactose, RCA and asialofetuin (ASF) via mixed self assembly monolayer of 11-mercaptoundecanoic acid and 6-mercaptohexanol, respectively. After adding RCA into the flowing cell, the deflection could be observed on the N-galactose or ASF modified microcantilever. Meanwhile, the deflection could also be observed after ASF bound to the RCA modified microcantilever. In order to prove that the deflection is caused by the specific interaction between the galactose group and RCA, bovine serum albumin (BSA) was introduced into the flowing cell as control experiment and no obvious deflection was observed. The specific interaction was also confirmed by the evidence that the bound protein layer can be mechanically removed with atomic force microscopy nanolithography technology.



Key Engineering Materials (Volumes 531-532)

Edited by:

Chunliang Zhang and Liangchi Zhang




H. Y. Zhang et al., "The Specific Binding between Galactose Group and Ricinus Communis Agglutinin (RCA) Investigated with Microcantilever", Key Engineering Materials, Vols. 531-532, pp. 600-604, 2013

Online since:

December 2012




[1] A. Varki: Glycobiology, Vol. 3 (1993) No. 2, p.97.

[2] A. Helenius and M. Aebi: Science, Vol. 291 (2001) No. 5512, p.2364.

[3] Y. Li, H. Qiao, C. Xing, J. Zhang, L. -X. Wang, H. Wang, B. Zhang and J. Tang: Journal of Structural Biology, Vol. 176 (2011) No. 1, p.46.

[4] S. Takae, Y. Akiyama, Y. Yamasaki, Y. Nagasaki and K. Kataoka: Bioconjugate Chemistry, Vol. 18 (2007) No. 4, p.1241.

[5] J. T. La Belle, J. Q. Gerlach, S. Svarovsky and L. Joshi: Analytical Chemistry, Vol. 79 (2007) No., p.6959.

[6] J. Nahalkova, J. Svitel, P. Gemeiner, B. Danielsson, B. Pribulova and L. Petrus: Journal of Biochemical and Biophysical Methods, Vol. 52 (2002) No. 1, p.11.


[7] Y. Wang, G. Yu, Z. Han, B. Yang, Y. Hu, X. Zhao, J. Wu, Y. Lv and W. Chai: FEBS Letters, Vol. 585 (2011) No. 24, p.3927.

[8] P. G. Datskos, N. V. Lavrik and M. J. Sepaniak: Sensor Letters, Vol. 1 (2003) No. 1, p.25.

[9] S. Cherian, A. Mehta and T. Thundat: Langmuir, Vol. 18 (2002) No. 18, p.6935.

[10] X. H. Xu, T. G. Thundat, G. M. Brown and H. F. Ji: Analytical Chemistry, Vol. 74 (2002) No. 15, p.3611.

[11] S. Shin, J. K. Paik, N. E. Lee, J. S. Park, H. D. Park and J. Lee: Ferroelectrics, Vol. 328 (2005) No., p.59.

[12] M. Watari, J. Galbraith, H. P. Lang, M. Sousa, M. Hegner, C. Gerber, M. A. Horton and R. A. McKendry: Journal of the American Chemical Society, Vol. 129 (2007) No. 3, p.601.

[13] S. M. Yang, C. Chang, T. I. Yin and P. L. Kuo: Sensors and Actuators B-Chemical, Vol. 130 (2008) No. 2, p.674.

[14] W. M. Shu, S. Laurenson, T. P. J. Knowles, P. K. Ferrigno and A. A. Seshia: Biosensors & Bioelectronics, Vol. 24 (2008) No. 2, p.233.

[15] J. Zhang and H. F. Ji: Analytical Sciences, Vol. 20 (2004) No. 4, p.585.

[16] Y. M. Xu, B. L. Zhang, S. H. Wu and Y. Xia: Anal Chim Acta, Vol. 649 (2009) No. 1, p.117.

[17] J. Clavilier, D. Armand and B. L. Wu: Journal of Electroanalytical Chemistry, Vol. 135 (1982) No. 1, p.159.

[18] M. Tamura, T. Igarashi, K. Kasai and Y. Arata: Biochemical and Biophysical Research Communications, Vol. 390 (2009) No. 3, p.581.

[19] M. Ambrosi, N. R. Cameron, B. G. Davis and S. Stolnik: Organic & Biomolecular Chemistry, Vol. 3 (2005) No. 8, p.1476.

[20] C. Verbelen, J. Antikainen, T. K. Korhonen and Y. F. Dufrene: Ultramicroscopy, Vol. 107 (2007) No. 10-11, p.1004.