Microstructure, Interface and Hardness of Ti/TiN Nanolayered Coatings


Article Preview

The polycrystalline Ti/TiN multilayer films were deposited by magnetron sputtering. We investigated the effects of mixed discharge gas pressure, bias voltage and substrate temperature on the microstructural, interfacial, and mechanical properties of the polycrystalline Ti/TiN multilayer films. X-ray reflectivity and diffraction (XRR and XRD), and nanoindentation were used to characterize the structures and mechanical properties for the films.The period of multilayer, interface width and grain size decrease with increaseing of deposition pressure. The multilayer coating at floating voltage shows TiN (111), Ti2N (103), and TiN (200) preferred crystalline orientation, whlie those at other different substrate biases show only TiN (111) and Ti2N (103) preferred crystalline orientation. It was found that the hardness increased with increasing substrate temperature. This hardness enhancement was probably caused by the modulus difference in the interface between layer Ti and TiN or the preferred crystalline orientation TiN(111).



Key Engineering Materials (Volumes 531-532)

Edited by:

Chunliang Zhang and Liangchi Zhang




X. M. Bai et al., "Microstructure, Interface and Hardness of Ti/TiN Nanolayered Coatings", Key Engineering Materials, Vols. 531-532, pp. 645-650, 2013

Online since:

December 2012




[1] Y. J. Zhang, P. X. Yan, Z. G. Wu, J. W. Xu, W. W. Zhang, X. Li, W. M. Liu and Q. J. Xue: J. Vac. Sci. Technol. A 22(2004), p.2419.

[2] N. J. M. Carvalho, E. Zoestbergen, B. J. Kooi and J. Th. M. De Hosson, Thin Solid Films 429(2003) , p.179.

DOI: https://doi.org/10.1016/s0040-6090(03)00067-1

[3] M. Matsuoka, S. Isotani, J. C. R. Mittani, J. F. D. Chubaci, K. Ogata and N. Kuratani, J. Vac. Sci. Technol. A 23(2005) , p.137.

[4] C. Sant, M. B. Daia, P. Aubert, S. Labdi and P. Houdy, Surf. and Coat. Technol. 127, p.167.

[5] E. Andrade, M. Flores, S. Muhl, N. P. Barradas, G. Murillo, E. P. Zavala and M. F. Rocha, Nucl. Instru. and Meth. in Phys. Res. B 219–220 (2004) , p.763.

[6] K. W. Chen, Y. H. Yu, H. Ch. Mu, E. Z. Luo, S B. undaravel, S. P. Wong and I. H. Wilson, Surf. and Coat. Technol. 151-152(2002) , p.434.

[7] M. B. Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, Ph. Houdy and J. L. Bozet, J. Appl. Phys. 87(2000) , p.7753.

DOI: https://doi.org/10.1063/1.373450

[8] Z. N. Farhat, Y. Ding, D. O. Northwood and A. T. Alpas, Surf. and Coat. Technol. 89(1997) , p.24.

[9] A. Dück, N. Gamer, W. Gesatzke, M. Griepentrog, W. Österle, M. Sahre and I. Urban, Surf. and Coat. Technol. 142-140, p.579.

[10] T. S. Li, H. Li and F. Pan, Surf. and Coat. Technol. 137(2001) , p.225.

[11] D. B. Lewis, Q. Luo, P. Eh Hovsepian and W. D. Münz, Surf. and Coat. Technol. 184(2004) , p.225.

[12] J. H. Xu, H. Umehara, I. Kojima, Appl. Surf. Sci. 201(2002) , p.208.

[13] H. L. Bai, Zh. J. He, R. Y. Tian, E. Y. Jiang, Acta Metallurgica Sinica 37(2001) , p.121 (in Chinese).

[14] J. Musil, H. Polakova, J. Suna and J. Vlcek, Surf. and Coat. Technol. 177-178(2004), p.289.

[15] G. J. Ying, J. D. Shao, Zh. X. Fan, Chinese J. Lasers 20(1993) , p.900 (in Chinese).

[16] N. Wainfan and L. G. Paratt, J. Appl Phys. 31(1960) , p.1331.

[17] C. Sarioglua, U. Demirlerb and M. Kursat Kazmanlib, Surf. and Coat. Technol. 190(2005), p.238.

[18] J. S. Koehler, Phys. Rev. B 2 (1970), p.547.

[19] I. Petrov, P. B. Barna, L. Hultman and J. E. Greene, J. Vac. Sci. Technol. A 21 S(2003), p.117.

[20] P. Patsalas, C. Charitidis and S. Logothetidis, Surf. and Coat. Technol. 125(2000), p.335.