Low Temperature Preparation of ZrC Coatings on C/C Composite via Molten Salt Reaction


Article Preview

Zirconium carbide (ZrC) coatings were prepared on C/C composite via molten salt reaction process at relatively low temperatures of 800-1000°C. During the reaction process, potassium fluorozirconate (K2ZrF6) played a role transporting zirconium from the molten salt to the C/C composite surface. Elevating reaction temperature increased the growth rate of coatings, simultaneously leaded to rougher coatings. The coatings growth rate increased with reaction time at first and then decreased gradually. The ZrC coatings prepared at 900°C for 5h was ~2m thickness. At the early stage, the low solubility of zirconium in the molten salt leaded to the low coatings growth rate. Secondly, the growth rate of the ZrC coatings was controlled by the chemical reaction between C/C composites and zirconium once zirconium was saturated in the molten salts. Thirdly, the control step of coatings formation turned into the diffusion of carbon through the formed ZrC coatings and which leaded to a gradual decrease of growth rate.



Key Engineering Materials (Volumes 531-532)

Edited by:

Chunliang Zhang and Liangchi Zhang




S.’an Chen et al., "Low Temperature Preparation of ZrC Coatings on C/C Composite via Molten Salt Reaction", Key Engineering Materials, Vols. 531-532, pp. 79-83, 2013

Online since:

December 2012




[1] C.R. Thomas: Essentials of Carbon-carbon Composites (The Royal Society of Chemistry, 1993).

[2] H. Li, H. Xue, Y. Wang, Q. Fu and D. Yao: Surf. Coat. Tech., Vol. 201 (2007), p.9444.

[3] F. Smeacetto, M. Salvo and M. Ferraris: Carbon, Vol. 40 (2002), p.583.

[4] Y. Xiang, W. Li, S. Wang, Z. Chen. Ceram. Int., Vol. 38 (2012), p.9.

[5] H. Liu, H. Cheng, J. Wang and G. Tang: Ceram. Int., Vol. 36 (2010) No. 7, p. (2033).

[6] X. YANG, Q. HUANG, Y. ZOU and X. CHANG: Trans. Nonferrous Met. Soc. China, Vol. 19 (2009), p.1044.

[7] N. S. Jacobson, D. J. Roth, R. W. Rauser and J. D. Cawley: Surf. Coat. Tech., Vol. 203 (2008), p.372.

[8] J. Huang, X. Zeng, H. Li, X. Xiong and G. Sun: Surf. Coat. Tech., Vol. 190 (2005), p.255.

[9] H. Zhou, L. Gao, Z. Wang and S. Dong: J. Am. Ceram. Soc., Vol. 93 (2010) No. 4, p.915.

[10] H. He, K. Zhou, X. Xiong and B. Huang: Mater. Lett., Vol. 60 (2006), p.3409.

[11] A. Bacciochini, N. Glandut and P. Lefort: J. Eur. Ceram. Soc., Vol. 29 (2009), p.1507.

[12] Y. Wang, Q. Liu, J. Liu, L. Zhang and L. Cheng: J. Am. Ceram. Soc., Vol. 91 (2008) No. 4, p.1249.

[13] J. H. Park, C. H. Jung, D. J. Kim and J. Y. Park: Surf. Coat. Tech., Vol. 203 (2008), p.87.

[14] D. Ferro, S.M. Barinov, J.V. Rau, A. Latini, R. Scandurra and B. Brunetti: Surf. Coat. Tech., Vol. 200 (2006), p.4701.

[15] D. Craciun, G. Socol, N. Stefan, G. Bourne, V. Craciun: Appl. Surf. Sci., Vol. 255 (2009), p.5260.

[16] G. Wen, S.H. Sui, L. Song, X.Y. Wang, L. Xia: Corros. Sci., Vol. 52 (2010), p.3018.

[17] A. Kononov, S. Kuznetsov and E. Polyakov: J. Alloys Compounds, Vol. 218 (1995), p.173.

[18] W. Zhou, X. Zheng, Y. Du, W. Zhang and Y. Lu: Rare Metal Mater. Eng., Vol. 38 (2009) No. 2, p.209.

[19] X. Liu and S. Zhang: J. Am. Ceram. Soc., Vol. 91 (2008) No. 2, p.667.

[20] Z.J. Dong, X.K. Li and G.M. Yuan: Appl. Surf. Sci., Vol. 254 (2008), p.5936.

[21] X. Li, Z. Dong, A. Westwood, A. Brown and S. Zhang: Carbon, Vol. 46 (2008), p.305.

[22] R. A. Andrievskii, Y. F. Khromov and I. S. Alekseeva: Fiz. Metal. Metalloved, Vol. 32 (1971) No. 3, p.664.