Effects of Cold Deformation on Precipitation in Fe-18Cr-12Mn-0.48N High-Nitrogen Austenitic Stainless Steel

Abstract:

Article Preview

The precipitation behaviors were investigated during isothermally aging at 700°C and 800°C after cold compressed by 30% in thickness in Fe-18Cr-12Mn-0.48N high-nitrogen austenitic stainless steel by using optical microscopy (OM), laser scanning confocal microscopy (LSCM) and transmission electron microscopy (TEM). The results show that precipitation morphology in cold-deformed sample is the same as non-cold-deformed sample, which also displays discontinuous cellular way. Cold deformation accelerates the precipitation of M2N phase. The precipitation occurs at not only grain boundaries but also twin grain boundaries in the experimental steel. In cold-deformed sample, besides the long-strip M2N precipitates, intermetallic phase-σ phase owning bct structure and lattice parameters of a=0.8800nm and c=0.4544nm were observed along grain boundaries and inside the grain.

Info:

Periodical:

Key Engineering Materials (Volumes 531-532)

Edited by:

Chunliang Zhang and Liangchi Zhang

Pages:

97-102

Citation:

F. Shi et al., "Effects of Cold Deformation on Precipitation in Fe-18Cr-12Mn-0.48N High-Nitrogen Austenitic Stainless Steel", Key Engineering Materials, Vols. 531-532, pp. 97-102, 2013

Online since:

December 2012

Export:

Price:

$38.00

[1] G. Stein, I. Hucklenbroich and H. Feichtinger: Mater. Sci. Forum, Vols. 318-320 (1999), p.151.

[2] M. Diener and M.O. Speidel: Mater. Manuf. Processes, Vol. 19 (2004), p.111.

[3] L. Diana, A.F. Neusa and P.T. André: Wear, Vol. 263 (2007), p.347.

[4] Y.S. Kim, S.D. Kim and S.J. Kim: Mater. Sci. Eng. A, Vols. 449-451 (2007), p.1075.

[5] H. Hanninen, J. Romu, R. Ilola, J Tervo and A. Laitinen: J. Mater. Process. Technol., Vol. 117 (2001), p.424.

[6] J.W. Simmons, B.S. Covino, J.A. Jr. Hawk and J.S. Dunning: ISIJ Int., Vol. 36 (1996), p.846.

[7] J.W. Simmons: Phys. Metall. Mater. Sci., Vol. 26 (1995), p.2579.

[8] J.W. Simmons, D.G. Atteridge and J.C. Rawers: Corrosion, Vol. 50 (1994), p.491.

[9] H.Y. Ha and H.S. Kwon: Electrochim. Acta, Vol. 52 (2007), p.2175.

[10] P. Shankar, H. Shaikh, S. Sivakumar, S. Venugopal, D. Sundararaman and H.S. Khatak: J. Nucl. Mater., Vol. 264 (1999), p.29.

[11] T.H. Lee, S.J. Kim and Y.C. Jung: Metall. Mater. Trans. A, Vol. 31 (2000), p.1713.

[12] J.K. Lai and A. Wickens: Acta Metall., Vol. 27 (1979), p.217.

[13] C.L. Briant and E.L. Hall: Corrosion, Vol. 42 (1986), p.522.

[14] H. Betrabet, K. Nishimoto, B.E. Wilde and W.A.T. Clark: Corrosion, Vol. 43 (1987), p.77.