Structural Properties of SrTiO3 Transparent Thin Films Formed by RF Magnetron Sputtering with Changing Substrate Temperatures


Article Preview

Transparent thin films of strontium titanate (SrTiO3) were formed on the substrate of quartz glass plate by RF magnetron sputtering with changing the substrate temperatures during the sputtering from 100 to 700 °C. The particle size and the lattice constant of the cubic-SrTiO3 crystallites composing the film were exhibited to be changed from 13 to 48 nm and from 4.02 to 3.96 Å, respectively, by the change of the substrate temperatures from 400 to 700 °C. The UV absorption edges of the transparent film samples shifted to longer wavelength with the increase of the particle size and the decrease of the lattice constant of the nanocrystalline SrTiO3.



Edited by:

Sumio Hosaka




K. Kakiage et al., "Structural Properties of SrTiO3 Transparent Thin Films Formed by RF Magnetron Sputtering with Changing Substrate Temperatures", Key Engineering Materials, Vol. 534, pp. 40-45, 2013

Online since:

January 2013




[1] J.F. Scott: Ferroelectric memories, Springer, Berlin (2000).

[2] Proc. Williamsburg Workshop on Ferroelectrics '99: J. Phys. Chem. Sol. Vol. 61 (2000), Issue 2.

[3] O. Auciello, J.F. Scott and R. Ramesh: Phys. Today Vol. 51 (1998), p.22.

[4] C. Noguera: Physics and Chemistry at Oxide Surfaces, Cambridge University Press, Cambridge (1996).

[5] V.E. Henrick and P.A. Cox: The Surface Science of Metal Oxides, Cambridge University Press, Cambridge (1994).

[6] M.E. Lines and A.M. Glass: Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford (1977).

[7] Y. Koyama, T. Moriyasu, E. Okamura, Y. Yamada, K. Tanaka and T. Kohmoto: Phys. Rev. B Vol. 81 (2010), p.024104.

[8] J. F. Scott: Rev. Mod. Phys. Vol. 46 (1974), p.83.

[9] K.W. Blazey: Phys. Rev. Lett. Vol. 27 (1971), p.146.

[10] S.K. Hodak and C.T. Rogers: Microelectron. Eng. Vol. 85 (2008), p.444.

[11] B.K. Choudhury, K.V. Rao and R.N.P. Choudhury: J. Mater. Sci. Vol. 24 (1989), p.3469.

[12] I. Burn and S. Neirman: J. Mater. Sci. Vol. 17 (1982), p.3510.

[13] M.N. Kamalasanan, N.D. Kumar and S. Chandra: J. Appl. Phys. Vol. 74 (1993), p.679.

[14] J.M. Hurd and C.N. King: J. Electron. Mater. Vol. 8 (1979), p.879.

[15] T. Sakuma, S. Yamamichi, S. Matsubara, H. Yamaguchi and Y. Miyasaka: Appl. Phys. Lett. Vol. 57 (1990), p.2431.

[16] G. Campet, M. Carrere, C. Puprichitkun, S.Z. Wen, J. Salardenne and J. Claverie: J. Solid State Chem. Vol. 69 (1987), p.267.

[17] D. Roy, C.J. Peng and S.B. Krupanidhi: Appl. Phys. Lett. Vol. 60 (1992), p.2478.

[18] H. Yamaguchi, S. Matsubara and Y. Miyasaka: Jpn. J. Appl. Phys. Vol. 30 (1991), p.2197.

[19] D. Bao, X. Yao, N. Wakiya, K. Shinozaki and N. Mizutani: Appl. Phys. Lett. Vol. 79 (2001), p.3767.

[20] JCPDS card: No. 00-005-0634 (SrTiO3, cubic).

[21] A.R. West: Solid State Chemistry and its Applications, John Wiley & Sons, Chichester (1984), pp.173-175.

[22] B.D. Cullity: Elements of X-ray diffraction 2nd ed., Addision-Wesley Pub. Co. (1978), pp.99-103.

[23] M. Yanagihara, K. Kawano, T. Honda, T. Kyomen and M. Hanaya: in press to Thermochimica Acta (Formation of NiZn ferrite nano-crystalline thin films by rf magnetron sputtering with changing substrate temperatures).


[24] R.W.G. Wyckoff: Crystal structures, Interscience Publishers, New York (1964).

[25] L.F. Mattheiss: Phys. Rev. B Vol. 6 (1972), p.4718.

[26] J.B. Goodenough: J. Appl. Phys. Vol. 37 (1966), p.1415.

[27] J.B. Goodenough, in: Progress in Solid State Chemistry, Volume 5, edited by H. Reiss, Pergamon Press, Oxford (1972), pp.231-233.

[28] M. Cardona: Phys. Rev. Vol. 140 (1965), p. A651.

[29] S. Piskunov, E. Heifets, R.I. Eglitis and G. Borstel: Comput. Mater. Sci. Vol. 29 (2004), p.165.

[30] W.A. Harrison: Electronic Structure and the Properties of Solids, W.H. Freeman and Company, San Francisco (1980), Chap. 19.

[31] J.S. Zhu, X.M. Lu, W. Jiang, W. Tian, M. Zhu, M.S. Zhang, X.B. Chen, X. Liu and Y.N. Wang: J. Appl. Phys. Vol. 81 (1997), p.1392.