Structure and Optical Properties of Al1−xScxN Thin Films


Article Preview

In this study, c-axis oriented AlN and Al1−xScxN films have been successfully grown on Si (100) and quartz glass by DC magnetron reactive sputtering method. The XRD patterns show that the crystal structure of the Al1−xScxN films is (002) orientation. The grain size and band gap energy (Eg) of the Al1−xScxN films decrease as the Sc concentration increases. The frequency of the E2 (high) mode observed in the Al1−xScxN films shows higher red shift compared to that observed in AlN film and the peak shifts to the low wave number with the increasing of Sc concentration.



Edited by:

Cheng Zhang, Nanchun Chen and Jin Hu




J. Yang et al., "Structure and Optical Properties of Al1−xScxN Thin Films", Key Engineering Materials, Vol. 537, pp. 140-143, 2013

Online since:

January 2013




[1] J. Li, K. B. Nam, M. L. Nakarmi, J. Y. Lin and H. X. Jiang, Band-edge photoluminescence of AlN epilayers, Appl. Phys. Lett. 81 (2002) 3365.


[2] T. Onuma, S. F. Chichibu, T. Sota, et al., Exciton spectra of an AlN epitaxial film on (0001) sapphire substrate grown by low-pressure metalorganic vapor phase epitaxy, Appl. Phys. Lett. 81 (2002 ) 652.


[3] E. Kuokstis, J. Zhang, Q. Fareed, et al., Near-band-edge photoluminescence of wurtzite-type AlN, Appl. Phys. Lett. 81 (2002) 2755.


[4] Kamohara, Akiyama and Kuwano, Influence of polar distribution on piezoelectric response of aluminum nitride thin films, Appl. Phys. Lett. 92 ( 2008) 093506.


[5] A. J. Steckl and R. Birkhahn, Visible emission from Er-doped GaN grown by solid source molecular beam epitaxy, Appl. Phys. Lett. 73 (1998) 1700.


[6] A. J. Steckl, J. C. Heikenfeld, D. S. Lee, et al., Rare-Earth-Doped GaN: Growth, Properties, and Fabrication of Electroluminescent Devices, IEEE J. Sel. Top. Quantum Electron. 8 (2002) 749.


[7] R. Birkhahn, M. Garter and A. J. Steckl, Red light emission by photoluminescence and electroluminescence from Pr-doped GaN on Si substrates, Appl. Phys. Lett. 74 (1999) 2161.


[8] N. Teraguchi, A. Suzuki, Y. Nanishi, et al., Room-temperature observation of ferromagnetism in diluted magnetic semiconductor GaGdN grown by RF-molecular beam epitaxy, Solid State Commun. 122 (2002) 651-653.


[9] K. Lorenz, U. Wahl, E. Alves, et al., High-temperature annealing and optical activation of Eu-implanted GaN, Appl. Phys. Lett. 85 (2004) 2712.

[10] N. Takeuchi, First-principles calculations of the ground-state properties and stability of ScN, Phys. Rev. B 65 (2002) 045204.

[11] L. Mancera, J. A. Rodriguez and N. Takeuchi, Theoretical study of the stability of wurtzite, zinc- blende, NaCl and CsCl phases in group IIIB and IIIA nitrides, Phys. Sta. Sol. 241 (2004) 24242428.


[12] M. Akiyama, T. Kamohara, K. Kano, et al., Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering , Adv. Mater. 21 (2009) 593-596.


[13] Y. Oussaifi, A. B. Fredj, M. Debbichi, N. Bouarissa and M. Said, Elastic properties and optical phonon frequencies of zinc-blende ScxGa1-xN, Semicond. Sci. Technol. 22 (2007) 641.


[14] T. R. Paudel and W. R. L. Lambrecht, Calculated phonon band structure and density of states and interpretation of the Raman spectrum in rocksalt ScN, Phys. Rev. B 79 (2009) 085205.


[15] A. L. Patterson, The Scherrer Formula for I-Ray Particle Size Determination, Phys. Rev. 56 (1939) 978.

[16] Q. Zhao, H. Zhang, X. Xu, Z. Wang, et al., Optical properties of highly ordered AlN nanowire arrays grown on sapphire substrate, Appl. Phys. Lett. 86 (2005) 193101.


[17] M. Kuball, Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control, Surf. Interface Anal. 31 (2001) 987–999.