Bulk-Heterojunction Solar Cells Based on Poly(3-hexylthiophene) and (6,6)-phenyl-C61-butyric-acid Methyl Ester on Polyethylene Terephthalate Substrates

Abstract:

Article Preview

Bulk-heterojunction solar cells were fabricated based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) on an indium tin oxide (ITO) coated flexible polyethylene terephthalate (PET) substrate. Performance improvements of the flexible solar cells by optimizing post thermal annealing conditions are reported. The solar cells annealed at 150 oC showed the minimal deformation of the PET substrate, and the resulted conversion efficiency was 1.35% under the light irradiation conditions of the Superscript textAM1.5 simulated solar intensity of 100 mW/cm2.

Info:

Periodical:

Edited by:

Yuan Ming Huang

Pages:

3-6

Citation:

Y. Yanagi et al., "Bulk-Heterojunction Solar Cells Based on Poly(3-hexylthiophene) and (6,6)-phenyl-C61-butyric-acid Methyl Ester on Polyethylene Terephthalate Substrates", Key Engineering Materials, Vol. 538, pp. 3-6, 2013

Online since:

January 2013

Export:

Price:

$38.00

[1] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater., 11, 15 (2001).

[2] K. M. Coakley, M. D. McGehee, Chem. Mater., 16, 4533 (2004).

[3] C. J. Brabec, Solar Energy Mater. Solar Cells., 83, 273 (2004).

[4] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Hegger, Science., 270, 1789 (1995).

[5] N. S. Sariciftci, L. Smilowitz, A. J. Hegeer, F. Wudl, Science., 285, 1474 (1992).

[6] C. W. Tang, Appl. Phys. Lett., 48, 183 (1986).

[7] M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Anderdon, R. H. Friend, Nature., 395, 257 (1998).

[8] S. Morita, A. A. Zakhaidov, K. Yoshino, Solid State Commun., 82, 249 (1992).

[9] C. J. Brabec, F. Padinger, N. S. Sariciftci, J. Appl. Phys., 85, 6866 (1999).

[10] S. E. Shaheen, et al., Appl. Phys. Lett., 78, 841 (2001).

[11] A. K. Pandey, et al., Appl. Phys. Lett., 89, 213506 (2006).

[12] C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. J. Janssen, N. S. Sariciftci, Synth. Met., 102, 861 (1999).

[13] F. Padinger, F. R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater., 13, 85 (2003).

[14] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater., 4, 864 (2005).

[15] M. Reyes-Reyes, K. Kim, D. L. Carroll, Appl. Phys. Lett., 87, 83506 (2005).

[16] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. -S. Ha, M. Ree, Nat. Mater., 5, 197 (2006).

DOI: https://doi.org/10.1038/nmat1574

[17] M. Al-Ibrahim, H. K. Roth, U. Zhokhavets, G. Gobsch, and S. Sensfuss, Sol. Energy Mater. Sol. Cells., 85, 13 (2005).

[18] M. Al-Ibrahim, O. Ambacher, S. Sensfuss, and G. Gobsch, Appl. Phys. Lett., 86, 201120 (2005).