Gelatin Coated 45S5 Bioglass®-Derived Scaffolds for Bone Tissue Engineering

Abstract:

Article Preview

Highly porous 45S5 Bioglass® scaffolds were fabricated by the foam replica method and successfully coated with a well attached gelatin layer by dipping and pipetting methods. Depending on macropore size of the scaffold and gelatin concentration, mechanically enhanced scaffolds with improved compressive strength in comparison to uncoated scaffolds could be obtained while preserving the high and interconnected porosity that is required for bone in-growth. Moreover, the scaffolds bioactivity by immersion in simulated body fluid (SBF) was investigated showing that gelatin coating preserves the intrinsic bioactivity of the Bioglass® scaffold. It was also shown that the gelatin layer can be loaded with tetracycline hydrochloride for developing scaffolds with drug delivery capability.

Info:

Periodical:

Edited by:

Alessandra Bianco, Ilaria Cacciotti and Ilaria Cappelloni

Pages:

31-39

Citation:

A. L. Metze et al., "Gelatin Coated 45S5 Bioglass®-Derived Scaffolds for Bone Tissue Engineering", Key Engineering Materials, Vol. 541, pp. 31-39, 2013

Online since:

February 2013

Export:

Price:

$38.00

[1] L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res. 5 (1971) 117-141.

DOI: https://doi.org/10.1002/jbm.820050611

[2] L.L. Hench, Bioceramics, J. Am. Ceram. Soc. 81 (1998) 1705-1728.

[3] L.L. Hench, Genetic design of bioactive glass, J. Eur. Ceram. Soc. 29 (2009) 1257-1265.

[4] I.D. Xynos, M.V. J Hukkanen, J.J. Batten, L.D. Buttery, L.L. Hench, J. M Polak, Bioglass 45S5 Stimulates Osteoblast Turnover and Enhances Bone Formation In vitro: Implications and Applications for Bone Tissue Engineering, Calcif. Tissue Int. 67 (2000).

DOI: https://doi.org/10.1007/s002230001134

[5] J.Y. Sun, Y.S. Yang, J. Zhong, D.C. Greenspan, The effect of the ionic products of Bioglass® dissolution on human osteoblasts growth cycle in vitro, J. Tissue Eng. Regen. Med. 1 (2007) 281-286.

DOI: https://doi.org/10.1002/term.34

[6] A.A. Gorustovich, J.A. Roether, A.R. Boccaccini, Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences, Tissue Eng. 16 B (2010) 199-207.

[7] S. Oh, N. Oh, M. Appleford, J.L. Ong, Bioceramics for Tissue Engineering Applications-A Review, Am. J. Biochem. Biotechnol. 2 (2006) 49-56.

[8] A.S. Brydone, D. Meek, S. Maclaine, Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proceedings of the institution of mechanical engineers, J. Eng. Med. 224 H (2010) 1329–1343.

DOI: https://doi.org/10.1243/09544119jeim770

[9] C.M. Agrawal, R.B. Ray, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, J. Biomed. Mater. Res. 55 (2001) 141-150.

DOI: https://doi.org/10.1002/1097-4636(200105)55:2<141::aid-jbm1000>3.3.co;2-a

[10] S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. Part I. Traditional factors, Tissue Eng. 7 (2001) 679-689.

DOI: https://doi.org/10.1089/107632701753337645

[11] Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering, Biomaterials 27 (2006) 2414-2425.

DOI: https://doi.org/10.1016/j.biomaterials.2005.11.025

[12] D.M. Yunos, O. Bretcanu, A.R. Boccaccini, Polymer-bioceramic composites for tissue engineering scaffolds, J. Mater. Sci. 43 (2008) 4433-4442.

DOI: https://doi.org/10.1007/s10853-008-2552-y

[13] W. Xia, J. Chang, Bioactive glass scaffold with similar structure and mechanical properties of cancellous bone, J. Biomed. Mater. Res. 95 B (2010) 449-455.

DOI: https://doi.org/10.1002/jbm.b.31736

[14] M. Mozafari, F. Moztarzadeh, M. Rabiee, M. Azami, S. Maleknia, M. Tahriri, Z. Moztarzadeh, N. Nezafati, Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering, Ceram. Int. 36 (2010).

DOI: https://doi.org/10.1016/j.ceramint.2010.07.010

[15] S.M. Lien, L.Y. Ko, T.J. Huang, Effect of crosslinking temperature on compression strength of gelatin scaffold for articular cartilage tissue engineering, Mater. Sci. Eng. 30 C (2010) 631-635.

DOI: https://doi.org/10.1016/j.msec.2010.02.019

[16] M. Dressler, F. Dombrowski, U. Simon, J. Börnstein, V.D. Hodoroaba, M. Feigl, S. Grunow, R. Gildenhaar, M. Neumann, Influence of gelatin coatings on compressive strength of porous hydroxyapatite ceramics, J. Eur. Ceram. Soc. 31 (2011) 523-529.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2010.11.004

[17] W.J.E.M. Habraken, J.G.C. Wolke, J.A. Jansen, Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering, Adv. Drug Deliv. Rev. 59 (2007) 234-248.

DOI: https://doi.org/10.1016/j.addr.2007.03.011

[18] H.W. Kim, J. C Knowles, H.E. Kim, Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds, J. Biomed. Mater. Res. 72 A (2005) 136-145.

DOI: https://doi.org/10.1002/jbm.a.30168

[19] V. Mouriño, A.R. Boccaccini, Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds, J. R. Soc. Interface 7 (2010) 209-227.

DOI: https://doi.org/10.1098/rsif.2009.0379

[20] A.L. Pataro, C.F. Franco, V.R. Santos, M.E. Cortés, R.D. Sinisterra, Surface effects and desorption of tetracycline supramolecular complex on bovine dentine, Biomaterials 24 (2003) 1075-1080.

DOI: https://doi.org/10.1016/s0142-9612(02)00403-9

[21] A.L. Pataro, M.F. Oliveira, K.I.R. Teixeira, R.M.M. Turchetti-Maia, M.T.P. Lopes, F.H.L. Wykrota, R.D. Sinisterra, M.E. Cortes, Polymer: Bioceramic composites optimization by tetracycline addition, Int. J. Pharm. 336 (2007) 75-81.

DOI: https://doi.org/10.1016/j.ijpharm.2006.11.038

[22] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3, J. Biomed. Mater. Res. 24 (1990) 721-734.

DOI: https://doi.org/10.1002/jbm.820240607

[23] M. Vallet-Regí, A.M. Romero, C.V. Ragel, R.Z. LeGeros, XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses, J. Biomed. Mater. Res. 44 (1999) 416-421.

DOI: https://doi.org/10.1002/(sici)1097-4636(19990315)44:4<416::aid-jbm7>3.0.co;2-s

[24] J.R. Jones, P. Sepulveda, L.L. Hench, Dose-dependent behavior of bioactive glass dissolution, J. Biomed. Mater. Res. 58 (2001) 720–726.

DOI: https://doi.org/10.1002/jbm.10053

[25] M. Erol, A. Özyuğuran, Ö. Özarpat, S. Küçükbayrak, 3D Composite scaffolds using strontium containing bioactive glasses, J. Eur. Ceram. Soc. 32 (2012) 2747-2755.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2012.01.015

[26] Q.Z. Chen, A.R. Boccaccini, Poly(D, L-lactic acid) coated 45S5 Bioglass (R)-based scaffolds: Processing and characterization, J. Biomed. Mater. Res. 77 A (2006) 445-457.

DOI: https://doi.org/10.1002/jbm.a.30636

[27] O. Bretcanu, Q.Z. Chen, S.K. Misra, I. Roy, E. Verne, C.V. Brovarone, A.R. Boccaccini, Biodegradable polymer coated 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering, Europ. J. Glass Sci. Technol. 48 A (2007) 227-234.

DOI: https://doi.org/10.1002/term.150

[28] B. Liu, P. Lin, Y. Shen, Y. Dong, Porous bioceramics reinforced by coating gelatin, J. Mater. Sci. Mater. Med. 19 (2008) 1203-1207.

DOI: https://doi.org/10.1007/s10856-007-3216-1

[29] M. Cicuéndez, I. Izquierdo-Barba, S. Sánchez-Salcedo, M. Vila, M. Vallet-Regí, Biological performance of hydroxyapatite–biopolymer foams: In vitro cell response, Acta Biomater. 8 (2012) 802-810.

DOI: https://doi.org/10.1016/j.actbio.2011.09.019

[30] J.C. Wenke, S.A. Guelcher, Dual delivery of an antibiotic and a growth factor addresses both the microbiological and biological challenges of contaminated bone fractures, Expert Opin. Drug Deliv. 8 (2011) 1555-1569.

DOI: https://doi.org/10.1517/17425247.2011.628655