AP40 Bioactive Glass Ceramic by Sol-Gel Synthesis: In Vitro Dissolution and Cell-Mediated Bioresorption

Abstract:

Article Preview

In this work, the sol-gel synthesis of AP40 bioactive glass system was reported. The obtained powder was fully characterised in terms of microstructure, composition and thermal behaviour by X-ray diffraction (XRD) measurements, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry and differential thermal analysis (TG-DTA). In vitro dissolution tests were performed in order to assess the degradation behaviour of sol-gel derived AP40 samples thermally treated at different temperatures. Finally, preliminary results on cytocompatibility are reported, based on bioresorption activity of human peripheral blood monocytes differentiated into osteoclasts on sintered disks.

Info:

Periodical:

Edited by:

Alessandra Bianco, Ilaria Cacciotti and Ilaria Cappelloni

Pages:

41-50

Citation:

I. Cacciotti et al., "AP40 Bioactive Glass Ceramic by Sol-Gel Synthesis: In Vitro Dissolution and Cell-Mediated Bioresorption", Key Engineering Materials, Vol. 541, pp. 41-50, 2013

Online since:

February 2013

Export:

Price:

$41.00

[1] A. Hoppe, N.S. Güldal, A.R. Boccaccini: Biomaterials Vol. 32 (2011), p.2757.

[2] A. Krajewski, A. Ravaglioli, A. Tinti, P. Taddei, M. Mazzocchi, R. Martinetti, C. Fagnano, M. Fini, J Mater Sci Mater Med 16.

DOI: https://doi.org/10.1007/s10856-005-5913-y

[2] (2005): 119-128.

[3] M. Bosetti, E. Vernè, M. Ferraris, A. Ravaglioli, M. Cannas, Biomaterials 22 (2001): 987-994. .

DOI: https://doi.org/10.1016/s0142-9612(00)00264-7

[4] L.C. Gerhardt and A.R. Boccaccini: Mater. Vol. 3 (2010), p.3867.

[5] L.L. Hench, J Europ Ceram Soc 29 (2009): 1257-1265.

[6] F. Balas, D. Arcos, J. Pérez-Pariente, M. Vallet-Regı´, J Mater Res 16 (2001): 1345-1348.

[7] I. Cacciotti, M. Lombardi, A. Bianco, A. Ravaglioli, L. Montanaro: J. Mater. Sci. Mater. Med. Vol. 23.

[8] (2012), p.1849.

[8] R.J. Winchester and G. Ross, Manual of Clinical Immunology, The American Society for Microbiology, Washington DC (1976), pp.64-76.

[9] A. Taranta, D. Fortunati, M. Longo, N. Rucci, E. Iacomino, F. Aliberti, E. Facciuto, S. Migliaccio, M.T. Bardella, A. Dubini, O. Borghi, S. Saraifoger, A. Teti, M.L. Bianchi, J Bone Mineral Res 19 (2004): 1112-1121.

DOI: https://doi.org/10.1359/jbmr.040319

[10] A. Saboori, M. Rabiee, F. Mutarzadeh, M. Sheikhi, M. Tahriri, M. Karimi, Mater Sci Eng C-Biomimetic Supramol Syst 29 (2009): 335-340.

[11] A.S. Rizkalla, D.W. Jones, D.B. Clarke, G.C. Hall, J Biomed Mater Res 32 (1996): 119-124.

[12] A.D. Pelton, P. Wu, J Non-Cryst Solids 253[1-3] (1999): 178-191.

[13] L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet, D. Bernache-Assolant, A. Govin, Acta Mater 55 (2007): 3305-3313.

DOI: https://doi.org/10.1016/j.actamat.2007.01.029

[14] O. Peitl, E.D. Zanotto, L.L. Hench, J Non-Cryst Solids 292 [1-3] (2001): 115–126.

[15] I. Elgayar, A.E. Aliev, A.R. Boccaccini, R.G. Hill, J Non- Cryst Solids 351 (2005): 173–183.

[16] H. Aguiar, J. Serra, P. González, B. León, J Non-Crystalline Solids 355 (2009): 475–480.

[17] A. Bianco, I. Cacciotti, M. Lombardi, L. Montanaro, Mater Res Bull 44 (2009): 345-354.

[18] J. Serra, P. González, B. León, J Non-Cryst Solids 355 (2009): 475–480.

[19] M. Cerruti and C. Morterra, Langmuir 20 (2004): 6382-6388.

[20] P. Ptacek , M. Noskova, J. Brandstetr, F. Soukal, T. Opravil, Thermochimica Acta 498[1-2] (2010): 54–60.

DOI: https://doi.org/10.1016/j.tca.2009.10.002

[21] S. Radin, P. Ducheyne, B. Rothman, A. Conti, J Biomed Mater Res 37.

[3] (1997): 363-375.

[22] Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 2002; 61.

DOI: https://doi.org/10.1002/jbm.10026

[2] 301–311.

[23] Cerruti M, Greenspan D, Powers K. Effect of pH and ionic strength on the reactivity of Bioglass® 45S5. Biomaterials 2005; 26: 1665–74.

DOI: https://doi.org/10.1016/j.biomaterials.2004.07.009

[24] J.T.Y. Lee, Y. Leng, K.L. Chow, F. Ren, X. Ge, K. Wang, X. Lu, Acta Biomater 7.

[6] (2011): 2615-2622.

[25] D. Geblinger, B. Geiger, L. Addadi, ChemBioChem 10 (2009): 158-165.

[26] T. Kizuki, M. Ohgaki, S. Ichinose, S. Nakamura, K. Hashimoto, Y. Toda, Y. Yokogawa, K. Yamashita, J Mater Sci: Mater Med 17 (2006): 859–867.

DOI: https://doi.org/10.1007/s10856-006-9846-x

[27] R. Detsch, D. Hagmeyer, M. Neumann, S. Schaefer, A. Vortkamp, M. Wuelling, G. Ziegler, M. Epple, Acta Biomater 6.

DOI: https://doi.org/10.1016/j.actbio.2010.03.003

[8] (2010): 3223–3233.

[28] Y.M. Zhao, Y.M. Zhang, Y.T. Zhao, Y.R. Cai, F. Monchau, A. Lefevre, H.F. Hildebrand, BIOmaterialien 6.

[4] (2005): 281–286.

[29] M. Zaidi, H.K. Datta, A. Patchell, B. Moonga, I. MacIntyre, Biochem Biophysic Res Comm 163.

[3] (1989): 1461-1465.

[30] G. Lehmann, I. Cacciotti, P. Palmero, L. Montanaro, A. Bianco, L. Campagnolo, A. Camaioni: Biomed. Mater. Vol. 7 (2012), p.055001.

DOI: https://doi.org/10.1088/1748-6041/7/5/055001