Synthesis and Photo-Catalytic Properties Characterization of Graphene/TiO2 Nanotube Composites

Abstract:

Article Preview

Selecting graphene oxide (GO) and the Degussa P25 TiO2 (80% anatase and 20% rutile) as raw materials, the composites of graphene/TiO2 nano-tubes were simply and quickly prepared under the conditions of a concentrated solution of sodium hydroxide. The as-obtained composites’ phase structure was analyzed and characterized by powder X-ray diffraction (XRD), their morphologies were also observed and cross-confirmed under the Transmission Electron Microscopy (TEM). The measurements showed that the composites prepared in this work have a remarkable structure, and compared to the seperate TiO2 nano-tubes, the agglomeration of TiO2 nano-tubes covered on the surface of the graphene is apparently not so serious. In view of this, we preliminary tested the composites’ photo-catalytic performance with the visible light irradiation, and also made a comparison with TiO2 nano-tubes.

Info:

Periodical:

Edited by:

Yiwang Bao, Danyu Jiang and Jianghong Gong

Pages:

21-24

Citation:

C. X. Li et al., "Synthesis and Photo-Catalytic Properties Characterization of Graphene/TiO2 Nanotube Composites", Key Engineering Materials, Vol. 544, pp. 21-24, 2013

Online since:

March 2013

Export:

Price:

$38.00

[1] M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemannt, Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95(1995) 69-96.

[2] P. A. Pekakis, N. P. Xekoukoulotakis, D. Mantzavinos, Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res. 40(2006) 1276-1286.

DOI: https://doi.org/10.1016/j.watres.2006.01.019

[3] M. Ramya, B. Anusha, S. Kalavathy, Decolorization and biodegradation of Indigo carmine by a textile soil isolate Paenibacillus larvae. Biodegradation 19(2008) 283-291.

DOI: https://doi.org/10.1007/s10532-007-9134-6

[4] M. M. Assadi, K. Rostami, M. Shahvali, M. Azin, Decolorization of textile wastewater by Phanerochaete chrysosporium. Desalination 141(2001) 331-336.

DOI: https://doi.org/10.1016/s0011-9164(01)85010-4

[5] H. M. H. Gad, A. El-Hakim, A. M. Daifullah, Impact of Surface Chemistry on the Removal of Indigo Carmine Dye Using Apricot Stone Active Carbon. Adsorpt. Sci. Technol. 25(2007) 327-341.

DOI: https://doi.org/10.1260/026361707783432588

[6] K. Rajeshwara, M. E. Osugib, W. Chanmaneec, C. R. Chenthamarakshana, M. V. B. Zanonib, P. Kajitvichyanukuld, R. Krishnan-Ayera, Heterogeneous Photocatalytic Treatment of Organic Dyes in Air and Aqueous Media. J. Photochem. Photobiol. C 9(2008).

[7] D. Friedmann, C. Mendive, D. Bahnemann, TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B: Environ. 99(2010) 398-406.

DOI: https://doi.org/10.1016/j.apcatb.2010.05.014

[8] J. Choi, H. Park, M. R. Hoffmann, Effects of single metal-ion doping on the visible light photoreactivity of TiO2. J. Phys. Chem. C 114(2010) 783-792.

DOI: https://doi.org/10.1021/jp908088x

[9] H. Zhang, G. Chen, D. W. Bahnemann, Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 19(2009) 5089-5121.

[10] Y. Park, S. H. Kang, W. Choi, Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion. Phys. Chem. Chem. Phys. 13(2011) 9425-9431.

DOI: https://doi.org/10.1039/c1cp20697d

[11] G. Williams, B. Seger, P. V. Kamat, TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano 2(2008) 1487-1491.

DOI: https://doi.org/10.1021/nn800251f

[12] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science 306(2004) 666-669.

DOI: https://doi.org/10.1126/science.1102896

[13] W. S. Hummers, R. E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(1958) 1339-1339.

DOI: https://doi.org/10.1021/ja01539a017

[14] C. Ratanatawanate, C. R. Xiong, K. J. Balkus, Jr., Fabrication of PbS Quantum Dot Doped TiO2 Nanotubes. ACS Nano 2(2008) 1682-1688.

DOI: https://doi.org/10.1021/nn800141e

[15] S. Zhang, L. M. Peng, Q. Chen, G. H. Du, G. Dawson, W. Z. Zhou, Formation Mechanism of H2Ti3O7 Nanotubes. Phys. Rev. Lett. 91(2003) 256103.

[16] S. Zhang, Q. Chen, L.M. Peng, Structure and Formation of H2Ti3O7 Nanotubes in an Alkali Environment. Phys. Rev. B. 71(2005) 014104.

[17] Q. Chen, G. H. Du, S. Zhang, L. M. Peng, The Structure of Trititanate Nanotubes. Acta Crystallogr., Sect. B 58(2002) 587-593.

[18] Y. Suzuki, S. Yoshikawa, Synthesis and Thermal Analyses of TiO2-Derived Nanotubes Prepared by the Hydrothermal Method. J. Mater. Res. 19(2004) 982-985.

DOI: https://doi.org/10.1557/jmr.2004.0128