Manufacture of Accurate Titanium Cranio-Facial Implants with High Forming Angle Using Single Point Incremental Forming

Abstract:

Article Preview

One of the key application areas of Single Point Incremental Forming is in the manufacture of parts for bio-medical applications. This paper discusses the challenges associated with the manufacture of cranio-facial implants with extreme forming angles using medical grade titanium sheets. While on one hand, the failure wall angle is an issue of concern, the parts also need to be manufactured with accuracy at the edges where the implants fit into the human body. Systematic steps taken to overcome these challenges, using intelligent intermediate part design, feature analysis and compensation, are discussed. A number of case studies illustrating the manufacture of accurate parts in aluminium, stainless steel and titanium grade-2 alloy are discussed.

Info:

Periodical:

Main Theme:

Edited by:

R.B. Clarke, A.G. Leacock, J.R. Duflou, M. Merklein and F. Micari

Pages:

223-230

Citation:

J. R. Duflou et al., "Manufacture of Accurate Titanium Cranio-Facial Implants with High Forming Angle Using Single Point Incremental Forming", Key Engineering Materials, Vol. 549, pp. 223-230, 2013

Online since:

April 2013

Export:

Price:

$38.00

[1] J. Duflou, J. Verbert, Y. Tunckol, F. Gelaude, B. Lauwers. Proceedings of the 2nd International Conference on Manufacturing Engineering. (2005) 217-225.

[2] A. Fiorentino, R. Marzi, E. Ceretti, International Journal of Mechatronics and Manufacturing Systems. 5(1) (2012) 36-45.

[3] A. Göttmann, M. Korinth, V. Schäfer, B. T. Araghi, M. Bambach, G. Hirt, Future Trends in Production Engineering. 5 (2013) 287-295.

DOI: https://doi.org/10.1007/978-3-642-24491-9_28

[4] V. Oleksik, A. Pascu, C. Deac, R. Fleaca, M. Roman, O. Bologa, Proceedings of the 10th International Conference on Numerical Methods in Industrial Forming Processes. (2010) 1208-1216.

[5] P.D. Eksteen, A.F. Van der Merwe. CIE42 Proceedings. 131 (2012) 1-7.

[6] K. Kuroda, Masazumi Okido. Bioinorganic Chemistry and Applications. (2012) 7 pages. doi: 10. 1155/2012/730693.

DOI: https://doi.org/10.1155/2012/730693

[7] B. P. Bannon, E. E. Mild, Titanium Alloys for Biomaterial Application: An Overview, in: H. A. Luckey, F. Kubli, F. Kubli, Jr., Titanium Alloys in Surgical Implants: A Symposium ASTM STP 796 (1983) pp.7-16.

DOI: https://doi.org/10.1520/stp28931s

[8] L.C. Hieu, E. Bohez, J.V. Sloten, L.T. Hung, L. Khanh, N. Zlatov, P.D. Trung, IFMBE Proceedings. 27 (2010) 119-122.

[9] J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, J. Allwood. CIRP Annals-Manufacturing Technology, 54(2) (2005) 623-649.

DOI: https://doi.org/10.1016/s0007-8506(07)60021-3

[10] J.R. Duflou, J. Verbert, B. Belkassem, J. Gu, H. Sol, C. Henrard, A.M. Habraken, CIRP Annals - Manufacturing Technology. 57(1) (2008) 253-256.

DOI: https://doi.org/10.1016/j.cirp.2008.03.030

[11] A. K. Behera, J. Verbert, B. Lauwers, J. R. Duflou. Computer-Aided Design, 45 (2013) 575-590. doi: 10. 1016/j. cad. 2012. 10. 045.

DOI: https://doi.org/10.1016/j.cad.2012.10.045

[12] A. K. Behera, H. Vanhove, B. Lauwers, J. R. Duflou, Key Engineering Materials. 473 (2011) 881-888.

[13] M. Bambach, B. T. Araghi, G. Hirt, Prod. Eng. Res. Devel., Vol. 3 (2009) 145-156.