Numerical Simulation of the Interaction Shock/Turbulent Boundary

Abstract:

Article Preview

This study is fulfilled to simulate numerically the interaction phenomenon of the bidimensional compressible and supersonic flow with M=2.28 of a turbulent boundary layer with an oblique choc wave. The oblique choc wave is released and oriented by a generator of choc in an angle of θw=8° on a plate plane maintained at a constant temperature. The interaction causes the detachment of the boundary layer and make it disturbed (The case of experimental study done by J. Deleuze (1995)). The contribution on the effects of turbulence and their characteristics is represented by k-w-SST model. This model is well adapted for this type of application. This study permits to underline the coherence of our analysis with existant numerical and experimental results. This simulation is effected by means of solver which based on the spatio-temporal discretization of the complex equations of Navier-Stockes with finite volumes method. We also use the Upwind scheme of second order.

Info:

Periodical:

Edited by:

Moussa Karama and Joël Alexis

Pages:

171-178

Citation:

H. Gouidmi et al., "Numerical Simulation of the Interaction Shock/Turbulent Boundary", Key Engineering Materials, Vol. 550, pp. 171-178, 2013

Online since:

April 2013

Export:

Price:

$38.00

[1] J. Deleuze, Structure d'une couche limite turbulente soumise à une onde de choc incident. Thèse doctorat. Université AIX-Marseille II, No. 2079588 (1995).

[2] H. Laurent, Turbulence d'une interaction onde de choc/couche limite sur une paroi plane adiabatique ou chauffée, thèse de Doctorat, Université AIX-Marseille II, (1996).

[3] J. Délery and J. P. Dussauge, Some physical aspects of shock wave/boundary layer interactions, Shock wave, No. 19 (2009) 453-468.

DOI: https://doi.org/10.1007/s00193-009-0220-z

[4] D. S. Dolling, Fifty years of shock-wave/boundary layer interaction research: what next?, AIAA J. No. 39 (8) (2001).

DOI: https://doi.org/10.2514/3.14896

[5] A. Hadjadj J, Larsson, B. E. Morgan, J. W. Nichols and S. K. Lele, Large-eddy simulation of shock/boundary layer interaction. Center for turbulence research-proceeding of the Summer ¨Program (2010).

[6] S. Deck, P. E. Weiss, M. Pamiès and E. Garnier, Zonal detached Eddy Simulation of spatially developing flat plate turbulent boundary layer, Computer§ Fluids No. 48 (2011) 1-15.

DOI: https://doi.org/10.1016/j.compfluid.2011.03.009

[7] K. Sinha, K. Mahesh and G. Candler, Modeling the effect of shock unsteadiness in shock-wave/turbulent boundary layer interactions, AIAA (2004).

DOI: https://doi.org/10.2514/6.2004-1129

[8] J. R. Edwards, Numerical simulations of shock/boundary layer interactions using time-dependent modeling techniques: A survey of recent results, Progress in Aerospace Sciences No. 44 (2008) 447-765.

DOI: https://doi.org/10.1016/j.paerosci.2008.06.004

[9] J. Y. Choi, I. S. Jeung and Y. Yoon, Scaling effect of the combustion induced by shock-wave boundary layer interaction in premixed Gas, Twenty-seventh symposium (international) on combustion (1998) 2181-2188.

DOI: https://doi.org/10.1016/s0082-0784(98)80067-2

[10] S. Pirozzoli and F. Grasso, Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2. 25, Physics of fluids No. 18 065113 (2006).

DOI: https://doi.org/10.1063/1.2216989

[11] E. Touber and N. D. Sandham, Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble, Theor. Comput. Fluid Dyn. No. 23 (2009) 79-107.

DOI: https://doi.org/10.1007/s00162-009-0103-z

[12] S. Teramoto, Large-Eddy simulation of shock wave/Boundary layer interaction, Trans. Japan Coc. Aero. Space sci. Vol. 47, No. 158 (2005) 268-275.

DOI: https://doi.org/10.2322/tjsass.47.268

[13] B. Morgan, S. Kawai and S. K. Lele, Large-Eddy simulation of an oblique shock wave impinging on a turbulent boundary layer, 10th fluid dynamics conference and exhibit, AIAA No. 4467 28 june-1 july Chicago, IIIinois (2010).

DOI: https://doi.org/10.2514/6.2010-4467

[14] M. Lagha, J. Kim, J. D. Eldredge and X. Zhong, A numerical study of compressible turbulent boundary layers, Physics of fluids No. 23 015106 (2011).

DOI: https://doi.org/10.1063/1.3541841

[15] M. F. Shahab, G. Lehnasch, T. B. Gatski and P, Comte, DNS of a spatially developing, supersonic turbulent boundary layer flow over a cooled wall, Turbulence, Heat and Masse Transfer 6, (2009).

DOI: https://doi.org/10.1615/ichmt.2009.turbulheatmasstransf.640

[16] S. Dubos, Simulation des grandes échelles d'écoulement turbulent supersoniques, These Doctorat, INSA de Rouen (2005).

[17] C. Hadad, Instationnarités, mouvements d'onde de choc et tourbillons à grandes échelles dans une interaction onde de choc/couche limite avec décollement, Thèse Doctorat, Université de Provence Aix-Marseille I (2005).

[18] V. S. Murthy and W. C. Rose, Wall shear stress measurements in shock wave boundary layer interaction, AIAA J. No. 7, 16 (1978) 667-672.

DOI: https://doi.org/10.2514/3.60956

[19] E. R. Van Driest, Turbulent boundary layer in compressible fluids, J. Aero. Sc. No. 3, 18 (1951) 145-160.

[20] M. V. Morcovin, Effects of compressibility on turbulent flows, Intern. Sympos. On the Mécanique de la turbulence,. CNRS, Paris. (1962) 367-380.