Consolidation of Blended Titanium/Magnesium Powders by Microwave Processing


Article Preview

Mg-Ti alloys are attractive for structural applications because of low density and improved corrosion resistance by selective oxidation including hydrogen storage and switchable mirror applications. Titanium has a melting point (1670°C) that greatly exceeds the boiling point of magnesium (1090°C) and therefore, alloying of Mg and Ti by conventional methods is extremely difficult. Secondly, the solubility of Ti in liquid Mg is very low and it is difficult to extend solubility by rapid solidification. Physical vapor deposition by electron beam deposition and magnetron co-sputtering has been used to extend the solubility of Ti in Mg. Mechanical alloying and anvil-cell processing at extreme temperatures and pressures have also used to enforce alloying of Mg with Ti. The present paper deals with the consolidation of blended magnesium-titanium powders by microwave heating, an approach that appears highly cost effective.



Edited by:

M. Ashraf Imam, F. H. (Sam) Froes and Ramana G. Reddy




M. A. Imam et al., "Consolidation of Blended Titanium/Magnesium Powders by Microwave Processing", Key Engineering Materials, Vol. 551, pp. 73-85, 2013

Online since:

May 2013




[1] F. H. Froes, Mater. Sci. Eng. A 117 (1989) 19.

[2] D. L. Douglas, in Proc. Int. Symp. On Hydrides for Energy Storage, edited by A. F. Andersen and A. J. Maeland (Pergamon, Oxford, (1978) p.151.

[3] P. Selvam, B. Viswanathan, C. S. Swamy and V. Srinivasan, Int. J. Hydrogen Energy 11 (1986) 169.

[4] F. Hehmann and H. Jones, Magnesium Technology, compiled by C. Baker, G. W. Lorimer and W. Unsworth (Institute of Metals, London) p.83).

[5] M. A. Imam, F. H. Froes and K. L. Housley. Titanium and Titanium Alloys. Kirk-Othmer Encyclopedia of Chemical Technology (2010) 1-41.


[6] G. Liang, R. Schulz, Journal of Materials Scioence 38 (2003) p.1179.

[7] A. A. Nayeb-Hashemi and J. B. Clark, Phase Diagrams of Binary Magnesium Alloys, (ASM International, Metals Park, OH 1988).

[8] C. C. Koch, in Proc. of Metals and Alloys, Materials Science and Technology, edited by R. W. Cahn, Vol. 15 (VCH, Weinheim, Germany, 1991).

[9] A. R. Yavari, P. J. Desre and T. Benameur, Phys. Rev. Lett. 68 (1992) 2235.

[10] J. Eckert, J. C. Holzer, C. E. Krill and W. L. Johnson, J. Mater. Res. 7 (1992) 1751.

[11] C. Gente, M. Oehring and R. Bormann, Phys. Rev. B 48 (1993) 13244.

[12] Y.V. Bykov, K.I. Rybakov, and V.E. Semenov: J. Phys. D: Appl. Phys., 2000, vol. 34, pp. R55–R75.

[13] R. Roy, R. Peelamedu, L. Hurtt, J. Cheng, and D. Agrawal: Mater. Res. Innov., 2002, vol. 6, p.128–40.

[14] J. Wang, J. Binner, B. Vaidhyanathan, N. Joomun, J. Kilner, G. Dimitrakis, and T.E. Cross: J. Am. Ceram. Soc., 2006, vol. 89, p.1977–84.

[15] D.E. Clark, D.C. Folz, and J.K. West: Mater. Sci. Eng. A, 2000, vol. 287, p.153–58.

[16] M.G. Kutty, S. Bhaduri, J.R. Jokisaari, and S.B. Bhaduri: Ceram. Eng. Sci. Proc., 2001, vol. 22, p.587–92.

[17] E.G. Pan and A.A. Ravaev: Mater. Lett., 2004, vol. 58, p.2679–83.

[18] R. Roy, D. Agrawal, J.P. Cheng, and S. Gedevanishvili: Nature, 1999, vol. 399, p.668–70.

[19] E. Breval, J.P. Cheng, D.K. Agrawal, and P. Gigl: Mater. Sci. Eng. A, 2005, vol. 391, p.285–95.

[20] G.I. Friedman: Int. J. Powder Metall., 1970, vol. 6, p.43–54.

[21] D. Agrawal, J.P. Cheng, H. Peng, L. Hurt, and K. Cherian: Am. Ceram. Soc. Bull, 2008, vol. 87, p.39–44.

[22] V.D. Buchelnikov, D.V. Louzguine-Luzgin, G. Xie, S. Li, N. Yoshikawa, M. Sato, A.P. Anzulevich, I.V. Bychkov, and A. Inoue: J. Appl. Phys., 2008, vol. 104, p.113505–1.


[23] R. Roy, D. Agrawal, J.P. Cheng, and S. Gedevanishvili: Nature, 1999, vol. 399, p.668–670.

[24] J. Cheng, R. Roy, and D. Agrawal, J. Mater. Sci. Lett. 20 (2001) 1561.

[25] J. Luo, C. Hunyar, L. Feher, G. Link, M. Thumm, and P. Pozzo, Appl. Phys. Lett. 84 (2004) 5076-5078.

[26] K.I. Rybakov, V.E. Semenov, S.V. Ergorov, A.G. Eremeev, I.V. Plotnikov, and Yu, V. Bykov, J. Appl. Phys. 99 (2006) 023506.

[27] T. Galek, K. Porath, E. Burkel, and U. van Rienen, Modelling Simul. Mater. Sci. Eng. 18 (2010) 025015.


[28] R.S. Dean, J.R. Long, F.S. Wartman, and E.L. Anderson: Trans. Am. Inst. Min. Metall. Eng., 1946, vol. 166, p.369–81.